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Tübingen, Germany
akaiser@rkaiser.de

Thomas Gorges
Robert Bosch GmbH

Chassis Systems Control
Leonberg, Germany

Thomas.Gorges@de.bosch.com

Abstract

Fully automatic source code analysis tools based on ab-
stract interpretation have become an integral part of the
embedded software development process in many compa-
nies. And although these tools are of great help in identi-
fying residual errors, they still possess a major drawback:
analyzing industrial code comes at the cost of many spu-
rious errors that must be investigated manually. The need
for efficient development cycles prohibits extensive manual
reviews, however. To overcome this problem, the combina-
tion of different software verification techniques has been
suggested in the literature. Following this direction, we
present a novel approach combining abstract interpretation
and source code bounded model checking, where the model
checker is used to reduce the number of false error reports.
We apply our methodology to source code from the auto-
motive industry written in C, and show that the number of
spurious errors emitted by an abstract interpretation prod-
uct can be reduced considerably.

1 Introduction

When verification technology is to be used in an in-
dustrial software project, the decision which paradigm to
choose is often based on a tradeoff between level of automa-
tion, acceptable runtimes for analysis, and required preci-
sion. Robert Bosch GmbH, the world’s largest supplier of
automotive components, decided to employ the commercial
abstract interpretation tool Polyspace [14] as part of their
standard software development process for driver assistance
systems on embedded devices. Other currently employed
quality measures include traditional unit and system tests
as well as code reviews. And although Polyspace is able
to produce impressive results, it suffers from a high false

positive rate. One reason for this is the complexity of the
software that is used nowadays on embedded devices, and
it must be expected that it will even increase in the future.

Previous projects like Orion [9] have already indicated a
solution to the problem of increasing complexity in analy-
sis and verification tasks. They propose to combine differ-
ent analysis techniques: in a first step, a global light-weight
data-flow analysis component is used to generate potential
error candidates or warnings. Then, in a second step, high
precision solvers check the feasibility of these potentially
spurious warnings. The first step may help the second one
by restricting the extensive original source code to fractions
that are relevant to reproduce the error.

In this work we adapt the original Orion idea by replac-
ing the light-weight dataflow technique by the abstract in-
terpretation tool Polyspace. Instead of the solvers CVC
and Simplify [10] which are used in Orion, we employ the
source code bounded model checker CBMC [5] to reduce
the number of false positives. We have also conducted lim-
ited experiments with another model checker, SATABS [6],
which uses counterexample-guided abstraction refinement
(CEGAR). We use the bounded model checker in two
ways: first, we feed it with the error reports provided by
Polyspace. This step, which we call Phase A, tries to obtain
more information about the errors in order to classify them
as real or spurious. Note that Phase A can be automated as
it requires few, trivial user interactions. If Phase A cannot
successfully handle an error report, we append a second,
manually guided step, called Phase B. In this second step
we add further information like invariants, input constraints
and non-formal requirements before performing another run
of CBMC to further improve the warning classification.

Although Phase B involves manual guidance, two advan-
tages compared to common warning inspection arise: The
required guidance (in our experiments, at least) is limited
to providing very simple invariants—e.g. input constraints



of integer variables like i > 0—which is easier than a
rigourous inspection of complex C code involving possi-
ble arithmetic overflows. Additonally, the confidence in the
analysis is increased, as a formal proof on the basis of the
former information might be created.

As a side-effect, Phase B gives information about the ori-
gins of the residual class of warnings. This class can be re-
fined into a set of warnings that could not be discharged or
proven because of limitations of the technique and as set of
warnings that could not be checked because of missing in-
formation, i.e. these warnings could not be refined by any
possible verification technique.

Note that our analysis, because it starts with the results
emitted by Polyspace, is not a comparison between abstract
interpretation and bounded model checking, but rather deals
with possible refinements of the first by the latter.

In our case study, which is based on 77 warnings pro-
duced by a run of Polyspace, we could reduce the number
of warnings by more than 23% in Phase A (cf. Section 3.1)
by either identifying them as real errors1 or rejecting them.
Manually guided post-processing, Phase B (cf. Section 3.2),
could then reduce the number of warnings by 70% of the
original number. It is important to note that in all cases
where an error could occur—or is inevitable—a concrete
counter-example trace is obtained by using CBMC. This
trace significantly helps to understand the problem.

The problem of proving any non-trivial property about a
computer program is well known to be undecidable. Com-
mon program analysis techniques therefore deal with ap-
proximations that may be sufficient for some programs and
a limited set of properties. A common shortcoming of all
these approaches is that they either report property viola-
tions that may not occur (false positives), or they do not re-
port violations that may in fact occur (false negatives). Due
to the undecidability of the verification problem, it is im-
possible to entirely avoid both false positives and false neg-
atives for all possible input programs. Nevertheless, many
different techniques have been tuned and applied success-
fully to even industrial sized software systems. The band-
width ranges from light-weight data-flow techniques [11]
up to the semi-automatic application of first-order dynamic
logic provers [12]. In general, there is always a tradeoff
between precision, level of automation, and required re-
sources, which vary among different techniques and appli-
cation areas.

For the analysis of safety critical software systems, false
negatives must be avoided with highest priority. False posi-
tives, on the other hand, may be acceptable, but cause a sig-
nificant development overhead due to the manual inspection
required for every—possibly spurious—violation.

1Note, that in a concrete execution on embedded hardware these errors
are handled in some implementation specific way, i.e. not necessarily the
termination of the program.

We now give a short definition of the basic techniques
that we use in our approach. For a more detailed presenta-
tion we refer the reader to the literature [3, 7].

Abstract Interpretation. Static analysis by abstract in-
terpretation is a technique that tries to prove the absence of
runtime errors by analyzing the source code of a program.
Among the errors that are typically checked are buffer over-
flows, invalid pointer accesses, array bounds checks, and
arithmetic under- and overflows. Abstract interpretation has
been successfully applied to many imperative programming
languages. It uses an overapproximation on the set of pos-
sible program execution traces, i.e., it considers more pro-
gram execution paths than the program can actually per-
form. Traces are iteratively extended until the program ter-
minates, reaches an error state, or arrives at a fixed limit of
execution steps. Overapproximation uses techniques such
as abstract variable domains and use of widening and nar-
rowing operators [7]. In the presence of loops, recursion,
or any other re-entrant code, the approximated program se-
mantics is obtained by fix-point computation. It is well
known that these abstractions typically introduce false pos-
itives (see, e.g., [16]).

Bounded Model Checking (BMC). Bounded model
checking (BMC) is a technique that was introduced by Biere
et al. [3] to check properties of hardware designs, but has
later been extended to also allow verification of C programs
[5]. Bounded model checking generates program execution
traces with bit-precision on the data level. It cannot handle
unlimited recursion and restricts loop executions to a fixed
bound (by unwinding loops up to this bound). If the bound
is high enough to capture the system semantics, BMC is
sound and complete. If the bound is too low a warning
about the possible unsoundness is usually provided. Val-
ues of fixed-size variables are not approximated, but han-
dled on the bit-level instead. Variable-size (possibly infi-
nite) data structures must be approximated, though. This
means, that BMC implements a precise program semantics
up to the point where the loop, recursion or data structure
size bound is reached. By using a precise semantics on
fixed-size variables, effects like overflows can be handled
accurately. An implementation of BMC for C programs is
CBMC [5]. We have used CBMC for the experiments re-
ported in this paper. Internally, CBMC generates program
traces by modelling the effects of each program statement
as a propositional logic formula. Each formula encodes a
single-step transition relation. These formulas are then put
together for all program steps on a trace. A further for-
mula is added that excludes entering error states. The com-
plete formula is then checked by a propositional logic satis-
fiability checker. The execution bound imposed by BMC
removes the need for fix-point computations, which dif-

2



1: void foo(unsigned int var) {
2: var = var & 0x02;
3: assert(var==0x02 || var==0);
4: }

Figure 1. Polyspace cannot prove that the as-
sertion in line 3 is true. As CBMC models
data operations on the bit level, it is able to
discharge the spurious warning.

ferentiates bounded model checkers from general symbolic
model checking algorithms, in which fix-points are com-
puted. General model checking approaches are also in use
for software verification, and may either work on abstract
models which resemble abstract domains, or they follow a
dynamic refinement process where modelling precision is
increased as necessary (CEGAR). Bounded model checking
has already been applied successfully for medium to large
scale software projects, e.g. for checking the correctness of
Linux kernel modules [15]. Model checking by abstraction
refinement has also been applied successfully [1, 4].

To illustrate the typical cases for refinements by bounded
model checking, a minimal C program in Figure 1 is given.
Polyspace is not able to show whether the assertion holds
or not, whereas CBMC deduces that the claim must always
hold.

2 Abstract Interpretation with Polyspace

Our work deals with the analysis whether runtime er-
rors may occur in embedded C programs. Runtime errors
do commonly include: division-by-zero, variable domain
over- and underflows, as well as array index operations on
invalid elements. Polyspace presents a warning for each po-
tential line that may lead to a runtime error when executed.
Such a warning includes the line in the source code as well
as a specification which kind of runtime error may occur.
The word warning indicates that not all program executions
will fail at the reported location. If no program execution
whatsoever may ever produce a failure at this point in the
program, the warning is called spurious. The expression
false positive is used synonymously.

A claim represents a (location-bound) program prop-
erty that must be true under all program executions. A
claim that is false on at least one execution trace implies
that Polyspace emits a warning (due to the soundness of
Polyspace). Claims represent proof obligations for program
verification. The process of software analysis maps claims
to a discrete set of claim-states, depending on whether the
claim holds or not. This set typically includes at least the
states TRUE, FALSE, and UNKNOWN, where the last
value indicates that it could not be determined whether the

Figure 2. Polyspace provides four claim-
states. When viewed as a refinement pro-
cess, all claims start at O. Further iterations
may then refine the model and determine
which claim may be shifted to one of the
states R, G or B. Note that R and G claims
may still be proven unreachable (B).

claim holds or not. Polyspace provides an enriched set of
claim-states, where each state is indicated by a color:

R)ed: The claim will always fail, i.e. the claim-state is
FALSE under the assumption that the code is reach-
able.

O)range: The generated overapproximation allows execu-
tion traces where the claim evaluates to FALSE. It is
not determined, however, whether the claim holds or
not in the original program. Commonly the claim-state
would also be labelled FALSE.

G)reen: The claim evaluates to TRUE for every program
execution.

B)lack: Program executions do not reach this location, i.e.
the location is either dead code or its execution is
masked by a previous runtime error.

Note that G and R claim-states can be promoted to B,
if re-evaluation of another orange claim causes the line to
become non-reachable. Possible transitions between claim-
states are indicated in Figure 2.

Table 1 presents a quantitative summary of the results
that we obtained running Polyspace on Bosch’s driver assis-
tance software. The part of Bosch’s software we examined
consists of nine components, which were analyzed indepen-
dently by Polyspace. The analysis run reported 468 error
candidates (claim-state O or R), out of which three could
be confirmed as real errors by Polyspace. For the other 465
cases only a warning was produced, which indicates that the
system could not determine whether it is a real or spurious
error. The errors reported by Polyspace fall into four cate-
gories: array index out of bound, division by zero, under- or
overflow, and other, not further categorized errors, e.g. shift
overflows.

Although the number of reported errors is quite low (a
total of three), a lot of warnings are produced. Out of the
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Table 1. Polyspace reports 468 possible errors in the analyzed system (3 errors, 465 warnings; R and
O columns). The three R-labelled claims will always cause a runtime error on execution. O-colored
lines of code indicate that an error may occur at that line. G-claims tell that no error can occur at
this location, while B-claims show locations that are not reachable at all. We have selected 77 out of
these error candidates for a further analysis with our proposed methodology.

Software
Module

Array Index Operation Division by Zero Under-/Overflow Other
R O G B R O G B R O G B R O G B

1 0 6 192 81 0 0 8 24 2 10 875 1005 0 27 3214 2551
2 0 5 577 3 0 0 17 1 0 31 1012 28 0 99 5148 157
3 0 0 14 0 0 0 3 0 0 13 151 30 0 21 1522 236
4 0 0 13 0 0 0 0 0 0 4 96 0 0 0 360 3
5 0 3 467 16 0 1 31 3 0 38 1097 94 0 58 4511 490
6 0 17 135 26 0 0 6 2 0 12 686 184 0 19 3385 1054
7 0 1 32 0 0 0 2 0 0 0 54 0 0 11 611 5
8 0 0 65 0 0 2 12 0 0 0 130 14 1 10 352 91
9 0 6 40 6 0 0 4 0 0 11 419 18 0 60 3595 177
Sum 0 38 1535 132 0 3 83 30 2 119 4520 1373 1 305 22698 4764
Selected - 38 - - - 3 - - 2 34 - - 0 0 - -
%Selected - 100% - - - 100% - - 100% 29% - - 0% 0% - -
Total Sel. 77/468 (16.5%)

proclaimed 465 warnings we selected 75 as well as two re-
ported overflow errors for our further analysis. Our criteria
for selecting these instances were as follows: we selected
all warnings in the first two categories (42), as these checks
are also built into CBMC. Among the under- and overflow
errors we selected those, where CBMC did not have prob-
lems to parse the C input files2. We also included under-
and overflows that were detected by Polyspace as real er-
rors, first, to confirm them with another tool and, second,
to get further localization information and error traces by
CBMC. We did not include any warnings of category “oth-
ers” into our analysis so far, due to time restrictions.

Our goal in the next sections is to reduce the number of
these 75 warnings reported by Polyspace by using another
more precise analysis engine, namely CBMC. Without this
further step, all of the warnings would need to be analyzed
manually. We also want to confirm the two overflow errors
reported by Polyspace, and obtain more information about
the origin of these errors.

3 Integrating BMC

Our approach to reduce spurious warnings is accom-
plished by doing an iterative filtering. Each warning emit-
ted by Polyspace has an associated claim-state that indi-
cates the so-far obtained knowledge about it. Starting with
Polyspace-generated claim-states, a two-phase refinement
is performed that aims at individually moving each warn-
ing towards a state that yields a higher level of knowledge.

2As CBMC is still in an early stage of development, it is not able to
handle all C constructs properly. Assembler and certain C++ passages also
prevent straightward application of CBMC and SATABS.

For example, the bounded model checker CBMC may prove
that a Polyspace-reported possible zero division error is spu-
rious. Thereby, a warning O is upgraded to belong to the set
of safe claims G.

Filtering works by applying two refinement phases on
the Polyspace report. Phase A, and the alternatively to be
used Phase A’, encompass an almost automatic application
of source code model checking techniques. In Phase A, the
bounded source code model checker CBMC is used as a
filtering engine. Phase A’ differs in so far, as CBMC is
replaced by SATABS. The result of this analysis may be
a proof that a warning is spurious, or a concrete program
trace that shows under which conditions the error occurs.
In the former case the warning is removed, in the latter case
a manual investigation is needed. However, as the coun-
terexample trace delivers additional information, the man-
ual inspection can be performed more efficiently. CBMC
may also be used as an interactive tool in this phase to re-
check the error after having made modifications to the code
or having provided further assumptions about code usage.
We call this manual, but tool-assisted part of the filtering
Phase B.

3.1 Phase A: Automatic Filtering through
CBMC

Phase A iterates over all warnings of the input set.
As tools like CBMC or SATABS are typically used for

modular program analysis, they need an additional parame-
ter: the function to be used as an entry point. The analysis
then covers this entry function as well as all functions that
are directly or indirectly called from it and for which source
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code is provided. We call the set of functions included in the
analysis the code context. We start with a minimal code con-
text, i.e. the function where the line producing the warning
is located in. Afterwards, the context is extended iteratively
until the warning is either discharged or CBMC does not
terminate in a fixed amount of time. The idea of stepwise
context extension is illustrated in Figure 3.

Figure 3. Example of Iterative Context Exten-
sion for CBMC.

Function foo contains a line of code that has lead to
a division-by-zero warning. When trying to discharge the
warning, CBMC will start using foo as the program entry
point. CBMC will discover that the claim may be violated at
local scope, as b might be zero. So the scope is extended by
adding—one after one—functions bar1 to bar3 (on level
1) to the context. CBMC is run with each of these func-
tions as an entry point. bar3 implies that the claim must
be flagged as an inevitable error, and this will terminate the
analysis process. Assuming that function bar3 was not
present in the example, CBMC would prove that on the call-
chain bar2->foo the claim holds. It would then move
on to bar1, checking the call-chain bar1->foo. This
call-chain (and the whole claim) would be flagged green
after having made another extension step adding function
prebar (on level 2) to the context. If CBMC fails to termi-
nate within a fixed amount of time, respectively if the bound
cannot be set high enough to recieve a soundness guarantee,
the claim remains flagged O. Otherwise, if CBMC provides
a counter-example trace, the claim will be flagged O c in-
stead of O, indicating that a counterexample has been pro-
vided for the claim of this warning. Our experiments have
been performed manually, though an automatic implemen-
tation of Phase A could be accomplished with moderate ef-
fort.

Phase A’: Automatic Filtering through SATABS In
Phase A’ CBMC is replaced by the model checker
SATABS[6]. SATABS features counterexample-guided ab-
straction refinement, and is therefore expected to provide a
broader coverage due to its powerful automatic abstraction
technique.

3.2 Phase B: Manually Supported Analy-
sis of Residual Warnings

Phases A and A’ can be performed automatically and
lead to a substantial reduction of warnings. The class of
residual warnings is treated in this phase, Phase B. This
study encompasses three possible treatments to further re-
duce the number of unclassified warnings.

1. Library functions. The software we analyzed consists
of library functions and application-specific code. For
library functions there is the additional requirement
that they have to be total, i.e. work for all possible
input values. So, in case CBMC provides a counterex-
ample for a warning located in a library function, this
warning can be directly classified as an error without
checking actual calls to this function from application-
specific code. (By using function signature annota-
tions for library functions, this step could also be auto-
mated.)

2. Underspecified input channels. Cross-module inter-
action is performed using shared memory directives.
Accessing shared memory must be performed using
unique get and set functions. Input and output
ranges for cross-module interactions are currently not
formally specified and provide a source for spurious
errors. Manual code review can provide reasonable
constraints about the ranges of input variables, how-
ever. Using assume semantics, this information can
be passed to the model checker which then is able to
prove that the system under test is correct under the
given assumptions.

3. Problem decomposition. The state explosion problem
as well as infinite loops pose a natural obstacle to the
application of CBMC. Indeed, several warnings arose
in a setting, where variable and constant initialization
is performed in a separate initialization function that
is called once at the beginning of the module’s life-
cycle. Two problems are induced by this setting: first,
the function where the warning was located, was itself
embedded in an infinite loop. Secondly, any experi-
ment had to include the initialization function as well
as the function under test. The resulting large chunk of
infinitely often executed code could be decomposed by
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manually performed invariant generation for the infi-
nite loop. All classical loop-invariant proof obligations
could then be provided in greatly improved runtime.

We will now present three examples for each of the
above categories. Note that the above classification does
not imply full coverage. However, the class of remain-
ing errors that could not be analyzed semi-automatically is
rather small. All code samples have been simplified, func-
tion names have been renamed for non-disclosure reasons.

Library functions. The following function add() may
lead to an overflow in line L1, e.g., for o1 = -10000 and
o2 = 40000.

short add(short o1,long o2){
if(o2>=(32767-(long)o1)) // (40000>=42767)
return 32767;

else{
if(o2<=(-32768-(long)o1)) // (40000<=-22768)

return -32768;
else

L1: return o1+(short)o2; // (short)40000 fails
}

}

As add is in fact a library function that bears the require-
ment to accept all inputs, the overflow error is confirmed
without further analysis using iterative context extension.

Adding input constraints. The following function
c getval() reads a short value from a shared memory
location (the ext[] array). L2 may yield an overflow due
to the implicit cast to the return type short and is therefore
flagged O by Polyspace, SATABS and CBMC.

extern unsigned int ext[10];

_Bool __precondition(){
return (ext[0] & 0xfff << 3)+(ext[4] & 0xf)

< 32768-5;
}

short c_getval(){
L2: return (ext[0] & 0xfff << 3)

+(ext[4] & 0xf);
}

Developers indicated that the overflow is spurious be-
cause the value encoded in ext[] is limited to a small
interval. A sufficient restriction to avoid the overflow is
encoded in the function precondition(). The proof
obligation that precondition() always evaluates to
true in the given source code could be established by in-
specting all write accesses to ext[]3. CBMC could then
prove that—assuming precondition() evaluates to
true—L2 is safe.

3Neither CBMC, SATABS or Polyspace could prove this global invari-
ant. However, Polyspace simplifies this task by reporting all possible write
accesses to ext[].

Compositional verification. The following example il-
lustrates the treatment of infinite loops by decomposition.
Note that m init is invoked once upon the start of the
module’s life-cycle. Afterwards, m main is executed pe-
riodically.

// L3: array index within bounds [0..9]
short ready,i,x; long v[10];

_Bool m_invariant(){
return ready? (x<10 && i<=x && i>=0) : 1;

}

void m_init(){ ready = 0; }

void m_main(){
if(!ready) x=10,i=0;
for(;i!=x; i++)
if(m_getval()+5)

L3: v[i]=add(-i,c_getval()*2L);
else{
ready=0; break;

}
}

The spurious warning stems from line L3. The claim is that
v[i] obeys the array index borders. If m invariant()
holds globally, L3 is safe: The key observation is that x and
i are always initialized when execution reaches L3. Initial-
ization is performed upon the first execution of m main().
The invariant expresses that when entering m main(), ini-
tialization will be performed immediately or it has been per-
formed in a preceding execution of m main(). The invari-
ant has been proven to hold after m init(). If it holds
prior to a single execution of m main(), it will also hold
afterwards. The latter proof obligations were proved using
CBMC.

Additional Claim States. Our former classification into
G, O, R, and B claims (cf. Section 2) is not adequate to
describe the results of Phases A, A’ and B. The classification
is therefore extended. Claims can now be in the following
states:

C)yan: Warnings that have been proven correct by a com-
positional verification task described in 3.2 with some
restrictions on the component-input.

Oc/O: Warnings with/without a (possibly spurious) coun-
terexample that could not be rejected in Phase A, and
the compositional verification task could not be com-
pleted (because of complexity or modelling issues,
e.g., type punning).

M)agenta: Warnings with counterexamples that appear in
a library function, or that have been proven a true error
using compositional verification.
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Figure 4. Extended transition graph of claim-
states. In contrast to Polyspace’s claim-
states (cf. Figure 2), the states Rc, Oc, C,
and M have been added. Arrows indicate that
transitions may be triggered by Polyspace,
SATABS or CBMC in all phases. Dotted ar-
rows express that SATABS and CBMC may
provide counter example traces. Transitions
between O/Oc and M/C stem from the semi-
automatic application of SATABS and CBMC
in Phase B.

Additional claim-states and transitions are depicted in
Figure 4. O-claims can be transformed to one of the classes
R, M, B, C or G.

4 Result Summary

Table 2 shows the filtering results after Phases A, A’ and
B. It is worth noting that SATABS is not able to provide
more information than CBMC. We found only one case
where SATABS provided a counter-example where CBMC
did not. Vice versa, CBMC was able to sort out 18 warnings
by classifying them as G or B — SATABS identified only
3.

Phase B substantially refined the results from Phase A.
Less than one third of the warnings remained in state O after
Phase B. These examples include 12 warnings that involve
type punning. Nine other residual problem cases are at least
decorated with a concrete counter-example. Only 3 cases
could not be refined due to performance issues.

Phase A can be performed as a fully automatic refine-
ment step. A reduction of 23% can be considered to be a
substantial improvement over the current situation.

Phase B involved manual application of bounded model
checking techniques. In three weeks, a university student
was able to prove 12 new errors (M). Moreover, the analy-
sis yielded information beyond the previously available in-
terface specification for 13 C-colored claims. 53% of the
warnings are now classified to be safe.

Finally, only 23 (30%) of the warnings remain subject
to further code reviews. More than half of these were
caused by the not yet implemented support of type punning
in CBMC. 8 of these are now combined with a concrete

counter-example trace. 3 cases could not be completed be-
cause of performace issues.

The results indicate that CBMC is better suited to dis-
charge warnings from abstraction based tools. Note that this
result is limited to the current domain of data-intensive low-
level system code. Moreover, the claim types, e.g. under-
and overflow, may naturally pose an obstacle for automatic
predicate refinement used by SATABS.

Runtimes. All experiments have been performed on a
computer equipped with an Intel Pentium 4 processor run-
ning at 3 GHz with 4 GB of main memory. For all exper-
iments a seven hour timeout has been used. Three tables
(Tables 3, 4 and 5) summarize details about the runtimes
and memory consumption for every claim.

Table 4 presents runtimes from Phase A where claims
lead to the same result using SATABS and CBMC. In
cases where the verification of a claim failed, SATABS and
CBMC have similar runtimes. CBMC is able to analyze
seven cases that SATABS cannot. Vice versa SATABS pro-
vides information about one claim that was not analyzable
by CBMC. These claims significantly contribute to the on
average higher runtime of CBMC shown in Table 3.

Cases where the warning could be discharged show that
CBMC is clearly superior to SATABS in Phase A. CBMC
discharges 18 warnings where SATABS only covers three
warnings. The rather insignificant subset of the three com-
mon cases were analyzed much faster by CBMC (Table 4).

It is notable that the propositional logic (CNF) formu-
las generated by CBMC that could be successfully handled
had up to seven million variables and 23 million clauses.
The satisfiable instances were solved much faster than the
unsatisfiable ones.

Table 5 indicates that in Phase B, where additional
information—invariants or input constraints—was pro-
vided, CBMC terminated much faster.

5 Related Work

This work covers two basic verification techniques: ab-
stract interpretation and bounded model checking. The for-
mer has already been successfully applied to low-level soft-
ware systems as shown by other authors: In [13], the ab-
stract interpretation tool Astrée is applied and tuned for
aerospace software. The authors stress that a tight customer
and tool developer cooperation may significantly improve
the process of manually removing, respectively investigat-
ing, warnings. On a non-modular control/command pro-
gram all spurious warnings could be removed. Our work
deals with modular programs and data-sensitive properties,
therefore it is doubtful whether all warnings could have
been avoided with a tool like Astrée.
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Table 2. Results after the refinement performed in Phases A, A’, and B. The initial claim-states pro-
vided by Polyspace undergo transitions as shown in Figure 4.

Start Phase A/A’ Phase B
Polyspace SATABS CBMC Combined CBMC

B 0 1 1 1 (≈1%) 1 (≈1%)
G 0 2 17 17 (22%) 27 (35%)
C - - - - 13 (17%)
O 75 (97%) 43 22 21 (27%) 15 (19%)
Oc - 30 36 37 (47%) 8 (10%)
M - - - - 12 (16%)
R 2 (≈3%) 0 0 0 0
Rc - 1 1 1 (≈1%) 1 (≈1%)

Rival [16] conducted an analysis of the origins of false
alarms using the abstract interpretation analyzer Astrée.
The time-consuming process of reviewing error reports is
improved by a proposed framework for semi-automatic in-
vestigation. In accordance with our approach, Rival pro-
poses to use sound analysis techniques to filter false alarms.
Instead of using model checking, he refers to different static
analysis techniques based on backward analysis, trace par-
titioning and slicing. In three case studies five false alarms
could be discharged semi-automatically. It is unclear how
his work relates to the large set of warnings that we ob-
served in our case study. In contrast to Phase A, their ap-
proach involves manually choosing adequate execution pat-
terns and constraints on input channels. Therefore, their
work resembles more our Phase B. The runtimes reported
in their study are significantly lower than in our case study,
however.

Bounded source code model checking as imple-
mented by CBMC [5] has been applied to Linux Device
Drivers [15]. Though CBMC could expose many hard-to-
find errors, it could not provide a full coverage of the com-
plete code and all paths. Unbounded loops, callbacks, and
the general problem of modularity remain an obstacle.

Examples for software model checking case studies
on large, low-level code bases are given in [1] and [4].
These case studies can best be compared with our ap-
plication of SATABS. While SATABS has been outper-
formed by CBMC in our experiments, the two studies re-
port that abstraction/refinement-based model checking may
yield good results on very large software. We believe that
this contradiction is due to the differences of the analyzed
code and the monitored program properties: The Bosch
code-base is less control/command oriented and, secondly,
the properties being checked are not high-level API safety-
properties (as in[1, 4]). Our observation is that unbounded
model checking—even with abstraction refinement—does
not work very well on checking data-sensitive properties in

low-level systems code.
Several groups have already considered various combi-

nations of technologies for software verification. The Orion
project implements a combined data-flow analysis with the
SMT-solver simplify [10]. In the original work, the authors
explicitly suggest to evaluate other combinations as the one
covered in their paper.

Beyer et al. [2] describe the theoretical convergence be-
tween program analysis and model checking. They present
an algorithm with implementation that combines lattice-
and tree-based analysis. Their experiments on a small code
base indicates large improvements over both approaches
taken on their own. In contrast to their work, we have cov-
ered a much larger codebase of industrial size. Moreover
we did not need to create a combined analysis method by
following an iterative approach. Schmidt [17] presents—to
the best of our knowledge—one of the earliest works deal-
ing with combinations of model checking, flow analysis and
abstract interpretation. In contrast to our work, the author
concentrates on integrating abstract interpretation, model
checking and data flow analysis. His work focuses on yield-
ing benefits from the differences between model checking
and abstract interpretation.

Csallner and Smaragdakis [8] present a combination of
testing and static analysis. Similar to the approach pre-
sented in this paper, the authors refine the results of a static
analysis tool by creating test cases from the generated anal-
ysis output. These test cases may prove that warnings and
potential errors are spurious. This technique can be com-
bined with the BMC based filtering proposed in this work.

6 Discussion and Experiences

The idea to combine different verification techniques is
appealing and comes at a low cost. We have shown that
in our case CBMC was able to discharge more than 20%
of Polyspace’s warnings automatically. Moreover, by man-

8



Table 3. Summary of all runtimes of Phase A and of the Polyspace analysis (grouped by analysis
result, timeout after 7h). VF indicates that a claim may be violated (failed) while VS stands for a
successful verification outcome.

More information Errors / No additional information
VF VS C-semantic Refinement Segm. fault Timeout Total

SATABS∑
t [h:m] 0:36 4:12 0:12 16:22 28:18 56:27 106:09

Timeout 0 0 0 0 0 8 8
#claims 31 3 12 14 9 8 77
CBMC∑

t [h:m] 9:15 19:57 0:01 - 6:23 42:06 77:43
Timeout 0 0 0 - 6 6 6
#claims 37 18 12 - 4 6 77
Polyspace∑

t [h:m] - - - - - - 28:08
#runs - - - - - - 9

Table 4. Comparison of runtimes for cases in which SATABS and CBMC produced identical results
(Phase A, grouped by analysis result, problems resulting from unsupported language features ig-
nored).

VF VS Out of memory (oom) Total
CBMC SATABS CBMC SATABS CBMC SATABS CBMC SATABS∑

t [h:m] 0:39 0:36 0:02 4:12 1:58 0:23 2:39 5:12
#claims 30 3 1 34

Table 5. Summary of CBMC runtimes sorted by phase and verification result.

Phase → Result A → VF B → VF A → VF B → VS A → oom B → VS
∑

A
∑

B∑
t [h:m] 0:16 0:06 7:45 6:17 56:07 16:02 64:08 22:26

#claims 1 16 7 24

ual inspection using CBMC as a companion tool, we could
reduce the number of false warnings even more. Given a
safety critical application and high code review costs, the
method is perfectly feasible for a verification practitioner.

Authors of other case studies, e.g. [13], claim that
100% of the spurious warnings can be removed for con-
trol/command programs. Three preconditions seem to be
required to achieve such a result:

• The code has to be non-modular or the code must be
formally specified in a way such that knowledge about
interface borders can be inferred.

• Tool applicants and tool developers must work closely
together.

• The program under test must be control/command ori-
ented.

Cases that support all three properties exist, as the au-
thors of [13] have shown. Nevertheless, the violation of one
or more of these properties may be very likely in industrial
practice. Then, manual code reviews or manual application
of verification tools cannot be avoided. Results from Phase
B support the claim that bounded model checking may also
improve the situation then. Specifying few properties may
expose hidden errors as well as discharge additional warn-
ings. Only 31% of the warnings persisted in our case study.
Of these, 50% are due to type punning being not yet sup-
ported by CBMC. For 37% at least concrete counterexam-
ple traces could be retrieved by CBMC.
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