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Abstract. We present a method to convert the construction of binary decision
diagrams (BDDs) into extended resolution proofs. Besides in proof checking,
proofs are fundamental to many applications and our results allow the use of
BDDs instead—or in combination with—established proof generation techniques,
based for instance on clause learning. We have implemented a proof generator for
propositional logic formulae in conjunctive normal form, called EBDDRES. We
present details of our implementation and also report on experimental results. To
our knowledge this is the first step towards a practical application of extended
resolution.

1 Introduction

Propositional logic decision procedures [1–6] lie at the heart of many applications in
hard- and software verification, artificial intelligence and automatic theorem proving
[7–12]. They have been used to successfully solve problems of considerable size. In
many practical applications, however, it is not sufficient to obtain a yes/no answer from
the decision procedure. Either a model, representing a sample solution, or a justifica-
tion, why the formula possesses none is required. So, e.g. in declarative modeling or
product configuration [9, 10] an inconsistent specification given by a customer corre-
sponds to an unsatisfiable problem instance. To guide the customer in correcting his
specification a justification why it was erroneous can be of great help. In the context of
model checking proofs are used, e.g., for abstraction refinement [11], or approximative
image computations through interpolants [13]. In general, proofs are also important for
certification through proof checking [14].

Using BDDs for SAT is an active research area [15–20]. It turns out that BDD [21]
and search based techniques [2] are complementary [22, 23]. There are instances for
which one works better than the other. Therefore, combinations have been proposed [16,
17, 20] to obtain the benefits of both, usually in the form of using BDDs for preprocess-
ing. However, in all these approaches where BDDs have been used, proof generation
has not been possible so far.

In our approach, conjunction is the only BDD operation considered to date. There-
fore our solver is far less powerful than more sophisticated BDD-based SAT solvers
[15–20]. In particular, we currently cannot handle existential quantification. However,
our focus is on proof generation, which none of the other approaches currently supports.
We also conjecture that similar ideas as presented in this paper can be used to produce
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proofs for BDD-based existential quantification and other BDD operations. This will
eventually allow us to generate proofs for all the mentioned approaches.

We have chosen extended resolution as a formalism to express our proofs, as it is
on the one hand a very powerful proof system equivalent in strength to extended Frege
systems [24], and on the other hand similar to the well-known resolution calculus [25].
Despite its strength, it still offers simple proof checking: after adding a check to avoid
cyclical definitions, an ordinary proof checker for resolution can be used.

Starting with [26], extended resolution has been mainly a subject of theoretical stud-
ies [27, 24]. In practical applications it did not play an important role so far. This may be
due to the fact that direct generation of (short) extended resolution proofs is very hard,
as there is not much guidance on how to use the extension rule. However, when “proofs”
are generated by another means (by BDD computations in our case), extended resolu-
tion turns out to be a convenient formalism to concisely express proofs. We expect that
a wide spectrum of different propositional decision procedures can be integrated into a
common proof language and proof verification system using extended resolution.

The rest of this paper is organized as follows: First, we give short introductions
to extended resolution and BDDs. Then we present our method to construct extended
resolution proofs out of BDD constructions. Thereafter, we portray details of our im-
plementation EBDDRES and show experimental results obtained with it. Finally, we
conclude and give possible directions for future work.

2 Theoretical Background

In this paper we are mainly dealing with propositional logic formulae in conjunctive
normal form (CNF). A formula F (over a set of variables V ) in CNF is a conjunction
of clauses, where each clause is a disjunction of literals. A literal is either a variable or
its negation. We use capital letters (C,D, . . . ) to denote clauses and small-case letters
to denote variables (a, b, c, . . . x, y, . . . ) and literals (l, l1, l2, . . . ). Instead of writing a
clause C = (l1 ∨ · · · ∨ lk) as a disjunction, we alternatively write it as a set of literals,
i.e. as {l1, . . . , lk}, or in an abbreviated form as (l1 . . . lk). For a literal l, we write l̄ for
its complement, i.e x̄ = ¬x and ¬x = x for a variable x.

2.1 Extended Resolution

Extended resolution (ER) was proposed by Tseitin [26] as an extension of the resolution
calculus [25]. The resolution calculus consists of a single inference rule,1

C∪̇{l} {l̄}∪̇D

C ∪D

and is used to refute propositional logic formulae in CNF. Here C and D are arbi-
trary clauses and l is a literal. A refutation proof is achieved, when the empty clause
(denoted by �) can be derived by a series of resolution rule applications. Extended

1 By ∪̇we denote the disjoint union operation, i.e. A∪̇B is the same as A∪B with the additional
restriction that A ∩B = ∅.
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resolution adds an extension rule to the resolution calculus, which allows introduction
of definitions (in the form of additional clauses) and new (defined) variables into the
proof. The additional clauses must stem out of the CNF conversion of definitions of the
form x ↔ F , where F is an arbitrary formula and x is a new variable, i.e. a variable
neither occurring in the formula we want to refute or in previous definitions nor in F .
In this paper—besides introducing two variables for the Boolean constants—we only
define new variables for if-then-else (ITE) constructs written as x ? a : b (for variables
x, a, b), which is an abbreviation for (x → a) ∧ (¬x → b). So introduction of a new
variable w as an abbreviation for ITE (x, a, b) = x ? a : b is reflected by the rule

(w̄x̄a)(w̄xb)(wx̄ā)(wxb̄)

which has no premises, and introduces four new clauses at once for the given instance
of the ITE construct. We have used the abbreviated notation for clauses here that leaves
out disjunction symbols. Concatenation of clauses is assumed to denote the conjunction
of these. It should also be noted that the extended clause set produced by applications
of the extension rule is only equisatisfiable to the original clause set, but not equivalent.

The interest in extended resolution stems from the fact that no super-polynomial
lower bound is known for extended resolution [24] and that it is comparable in strength
to the most powerful proof systems (extended Frege) for propositional logic [24]. This
also means that for formulae which are hard for resolution (e.g. Haken’s pigeon-hole
formulae [28]) short ER proofs exist [27]. Moreover, as it is an extension of the resolu-
tion calculus, ER is a natural candidate for a common proof system integrating different
propositional decision procedures like the resolution-based DPLL algorithm [1, 2] .

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were proposed by Bryant [21] to compactly repre-
sent Boolean functions as DAGs (directed acyclic graphs). In their most common form
as reduced ordered BDDs (that we also adhere to in this paper) they offer the advantage
that each Boolean function is uniquely represented by a BDD, and thus all semantically
equivalent formulae share the same BDD. BDDs are based on the Shannon expansion

f = ITE (x, f1, f0) = (x → f1) ∧ (¬x → f0) ,

decomposing f into its co-factors f0 and f1 (w.r.t variable x). The co-factor f0 (resp.
f1) is obtained by setting variable x to false (resp. true) in formula f and subsequent
simplification. By repeatedly applying Shannon expansion to a formula selecting split-
ting variables according to a global variable ordering until no more variables are left
(ending in terminal nodes 0 and 1), its BDD representation is obtained (resembling a
decision tree). Merging equivalent nodes (i.e. same variable and co-factors) and delet-
ing nodes with coinciding co-factors results in reduced ordered BDDs. Fig. 1 shows the
BDD representation of formula f = x ∨ (y ∧ ¬z).

To generate BDDs for (complex) formulae, instead of performing Shannon decom-
position and building them top-down, they are typically built bottom-up starting with
basic BDDs for variables or literals, and then constructing more complex BDDs by
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Algorithm 1: BDD-and(a, b)
1: if a = 0 or b = 0 then return 0
2: if a = 1 then return b else if b = 1 then return a
3: (x, a0, a1) = decompose(a); (y, b0, b1) = decompose(b)
4: if x < y then return new-node(y, BDD-and(a, b0), BDD-and(a, b1))
5: if x = y then return new-node(x, BDD-and(a0, b0), BDD-and(a1, b1))
6: if x > y then return new-node(x, BDD-and(a0, b), BDD-and(a1, b))

using BDD operations (e.g., BDD-and, BDD-or) for logical connectives. As we will
need it in due course, we give the BDD-and algorithm explicitly (Algorithm 1). Here,
decompose breaks down a non-terminal BDD node into its constituent components, i.e.
its variable and cofactors. The function new-node constructs a new BDD node if it is
not already present, and otherwise returns the already existent node. The comparisons
in steps 4 to 6 are based on the global BDD variable order.

1

x

y

z

0 1

1

1
0

0

0

Fig. 1. BDD representation of formula x ∨ (y ∧ ¬z) using variable ordering x > y > z.

3 Proof Construction

We assume that we are given a formula F in CNF for which we want to construct an
ER proof that shows unsatisfiability of F (i.e., we show that ¬F is a tautology). Instead
of trying to derive such a proof directly in the ER calculus—which could be quite hard,
as there are myriads of ways to introduce new definitions—we first construct a BDD
equivalent to formula F and then extract an ER proof out of this BDD construction.
The BDD for formula F is built gradually (bottom-up) by conjunctively adding more
and more clauses to an initial BDD representing the Boolean constant true.

Starting with an ordered set of clauses S = (C1, . . . , Cm) for formula FS =
C1 ∧ · · · ∧ Cm (which we want to proof unsatisfiable), we thus first build a BDD ci

for each clause Ci. Then we construct intermediate BDDs hi corresponding to partial
conjunctions C1 ∧ · · · ∧ Ci, until, by computing hm, we have reached a BDD for the
whole formula. These intermediate BDDs can be computed recursively by the equations

h2 ↔ c1 ∧ c2 and hi ↔ hi−1 ∧ ci for 3 ≤ i ≤ m .
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If hm is the BDD consisting only of the 0-node, we know that formula FS is unsatisfi-
able and we can start building an ER proof.

The method to construct the ER proof works by first introducing new propositional
variables (thus ER is required), one for each node of each BDD that occurs during the
construction process, i.e. for all ci and hi. New variables are introduced based on the
Shannon expansion of a BDD node: for an internal node f containing variable x and
having child nodes f1 and f0, a new variable (which we also call f ), defined by

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)

is introduced. We have also given the clausal representation of the definition on the
right. Terminal nodes are represented by additional variables n0 and n1 defined by

n0 ↔ 0 (n̄0) and n1 ↔ 1 (n1) .

Note that introducing new variables in this way does not produce cyclic definitions,
as the BDDs themselves are acyclic. So by introducing variables bottom-up from the
leaves of the BDD up to the top node, we have an admissible ordering for applying the
extension rule.

With these definitions, we can give an outline of the ER proof we want to generate. It
consists of three parts: first, we derive unit clauses (ci) for the variables corresponding
to the top BDD nodes of each clause. Then out of the recursive runs of each BDD-
and-operation we build proofs for the conjunctions hi−1 ∧ ci ↔ hi (in fact, only the
implication from left to right is required). And finally, we combine these parts into a
proof for hm. If hm is the variable representing the zero node, i.e. hm = n0, we can
derive the empty clause by another single resolution step with the defining clause for
n0. We thus have to generate ER proofs for all of the following:

S ` ci for all 1 ≤ i ≤ m (ER-1)
S ` c1 ∧ c2 → h2 (ER-2a)
S ` hi−1 ∧ ci → hi for all 3 ≤ i ≤ m (ER-2b)
S ` hm (ER-3)

For a proof of (ER-1) for some i assume that clause D = Ci consists of the literals
(l1, . . . , lk). We assume literals to be ordered decreasingly according to the BDD’s
global variable ordering. Then the newly introduced variables for the nodes of the BDD
representation of clause D are dj ↔ (lj ? n1 : dj+1) if lj is positive, and dj ↔
(l̄j ? dj+1 : n1) if lj is negative. We identify dk+1 with n0, and ci with d1 here.
These definitions induce—among others—the clauses (dj l̄j n̄1) and (dj lj d̄j+1) for all
1 ≤ i ≤ k. We therefore obtain the following ER proof for (d1): First, we derive
(dkl1 . . . lk−1n̄1) by resolving (l1 . . . lk) with (dk l̄kn̄1). Then, iteratively for j = k
down to j = 2, we derive (dj−1l1 . . . lj−2n̄1) from (dj l1 . . . lj−1n̄1) by

(dj l1 . . . lj−1n̄1) (dj−1lj−1d̄j)
(dj−1l1 . . . lj−1n̄1) (dj−1 l̄j−1n̄1)

(dj−1l1 . . . lj−2n̄1)
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And finally, we derive the desired (d1) by resolving (d1n̄1) with (n1).
For (ER-2a) and (ER-2b), assume that we want to generate a proof for the general

implication f ∧ g → h (i.e. for the clause (f̄ ḡh)), where we have h computed as the
conjunction of f and g by the BDD-and operation. Definitions for the BDD nodes resp.
variables are given by the Shannon expansion of f , g and h as

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)
g ↔ (x ? g1 : g0) (ḡx̄g1)(ḡxg0)(gx̄ḡ1)(gxḡ0)
h ↔ (x ? h1 : h0) (h̄x̄h1)(h̄xh0)(hx̄h̄1)(hxh̄0) .

We can now recursively construct an ER proof for the implication f ∧ g → h, where in
the recursion step we assume that proofs for both f0 ∧ g0 → h0 and f1 ∧ g1 → h1 are
already given. We thus obtain:

(hxh̄0)
(ḡxg0)

(f̄xf0)

...
(f̄0ḡ0h0)

(f̄xḡ0h0)
(f̄ ḡxh0)

(f̄ ḡhx)

...
(f̄1ḡ1h1) (f̄ x̄f1)

(f̄ x̄ḡ1h1) (ḡx̄g1)
(f̄ ḡx̄h1) (hx̄h̄1)

(f̄ ḡhx̄)
(f̄ ḡh)

The recursive process stops when we arrive at the leave nodes resp. the base case
of the recursive BDD-and algorithm. This algorithm stops, if either of its arguments
is a Boolean constant, or when both arguments are the same. In each case we obtain
tautological clauses, like e.g. (n̄0ḡn0) for f being the 0-BDD, or (f̄f) for computing
the conjunction of two identical arguments. We call this a trivial step of the BDD-and
algorithm. Moreover, we may stop the recursion, if f implies g (or vice versa), as we
then have generated the tautological clause (f̄gf). This case we call a redundant step
of the algorithm. We will show below how such tautological clauses can be avoided or
eliminated in the ER proof.

For a proof of (ER-3) we just have to combine parts one and two: We can resolve
the derived unit clauses (c1) and (c2) with the implication (c̄1c̄2h2) to produce a proof
of (h2), and then continue iteratively using (ER-2b) to derive further unit clauses (hi)
for all 3 ≤ i ≤ m. Finally, (hm) is resolved with (n̄0) to produce the empty clause.
This completes the whole ER proof for unsatisfiability of FS .

3.1 Avoiding Tautological Clauses

The proofs (ER-2a) and (ER-2b) presented above may contain tautological clauses that
are introduced by equivalent BDD nodes. So if, e.g., f0 = h0, the recursive proof step
starts with a tautological clause in the left branch. We now give a detailed construction
that avoids such clauses completely, starting with some definitions:

Definition 1 (Line, Step). A triplet of BDD nodes (f, g, h) such that h is the BDD
node representing f ∧ g is called a (BDD-and) step. A step is called trivial if f or g are
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Boolean constants or if f = g. A non-trivial step is also called a (cache) line. Steps and
lines are also identified with clauses, where a line (f, g, h) corresponds to the clause
(f̄ ḡh). We identify nodes with ER variables here.

Definition 2 (Redundancy). A line L = (f, g, h) is called redundant if f = h or
g = h, otherwise it is called irredundant. The notion of redundancy also carries over
to the clause (f̄ ḡh) corresponding to line L.

When we have reached an irredundant step (f̄ ḡh), we can check whether the co-
factor clauses of the assumptions (f̄0ḡ0h0) and (f̄1ḡ1h1) of the step are redundant. If
this is the case, the proof has to be simplified and recursion stops (in all but one case) at
the redundant step. We now give simplified proofs that contain no tautological clauses
for the recursion step of the proofs (ER-2a) and (ER-2b). In what follows, we call the
sub-proof of (f̄ ḡhx) out of (f̄0ḡ0h0) the left branch and the sub-proof of (f̄ ḡhx̄) out
of (f̄1ḡ1h1) the right branch of the recursive proof step.

R1 If f0 = h0, we obtain a proof for the left branch (and analogously for g0 = h0

and for f1 = h1 or g1 = h1 on the right branch) by resolving (hxh̄0) and (f̄xf0)
to produce (f̄hx). Although we have proved a stronger claim on the left branch in
this case, it cannot happen that g also disappears on the right branch, as this would
only be possible if f1 = h1. But then f = h would also hold and the step (f̄ ḡh)
would already be redundant, contradicting our assumption.

T1 If f0 = g0 (this is not a tautological case, however) then h0 = f0 = g0 also holds,
so that we arrive at the case above (and similarly for f1 = g1). We can even choose
which of the definitions (either for f or for g) we want to use.

T2 If f0 = 1 we obtain h0 = g0 and we can use the proof given under (R1) for the left
branch (similar for g0 = 1, f1 = 1, and g1 = 1). If f0 = 0, we can use the definition
(f̄xn0) of f and (n̄0) of 0 to derive the stronger (f̄x). It cannot happen that f1 = 0
at the same time (as then the step would be trivial), so the only possibility where
we are really left with a stronger clause than the desired (f̄ ḡh) occurs when f0 = 0
and g1 = 0 (or f1 = g0 = 0). Then we have h = 0 and we can derive (f̄ ḡ). In this
case we just proceed as in case (H0) below.

H0 If h = 0 we let h0 = h1 = 0 and recursively generate sub-proofs skipping the
definition of h by rule (X1) below.

H1 The case h = 1 could only happen if f = g = 1 would also hold. But then the step
would be redundant. If h0 = 1 we derive the stronger (hx) by resolving (hxn̄1)
with (n1), and similar for h1 = 1. It cannot happen that we have h0 = h1 = 1 at
the same time, as this would imply h = 1. Thus, on the other branch we always
obtain a clause including f̄ and ḡ and therefore the finally resulting clause is always
(f̄ ḡh).

X1 If the decision variable x does not occur in one or several of the BDDs f , g, or h
(i.e., for example, if f = f0 = f1) the respective resolution step(s) involving f̄ , ḡ,
or h, can just be skipped.

Note that in all degenerate cases besides cases (T2) (only for f0 = g1 = 0 or
f1 = g0 = 0) and (H0) the proof stops immediately and no recursive descent towards
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the leaves of the BDD is necessary. If the last proof step in any of the sub-proofs of (ER-
2a) or (ER-2b) results in a redundant step, the proof of part (ER-3) contains tautological
clauses and must be simplified. So assume in (ER-2a) that the last step is redundant, i.e.
in (c̄1c̄2h2) either c1 = h2 or c2 = h2 holds. In both cases the BDD-and computation
is not needed and we can skip the resolution proof for h2 and use clause c1 or c2,
whichever is equivalent to h2, in the subsequent proof. The same holds for (ER-2b), if
the last proof step is redundant and we thus have hi−1 = hi or ci = hi. Again, we can
drop the BDD-and computation and skip the resolution proof for hi out of hi−1 and ci,
but instead using hi−1 or ci directly.

A further reduction in proof size could be achieved by simplifying definitions in-
troduced for BDD nodes with constants 0 and 1 as co-factors. So instead of using
f ↔ (x ? n1 : f0) as definition for a node f with constant 1 as its first co-factor,
we could use the simplified definition f ↔ (x̄ → f0) which would result in only three
simpler clauses (f̄xf0), (fx̄), and (ff̄0).

4 Implementation and Experimental Results

We have implemented our approach in the SAT solver EBDDRES. It takes as input a
CNF in DIMACS format and computes the conjunction of the clauses after transforming
them into BDDs. The result is either the constant zero BDD, in which case the formula is
unsatisfiable, or a non-zero BDD. In the latter case a satisfying assignment is generated
by traversing a path from the root of the final BDD to the constant one leaf.

In addition to solving the SAT problem, a proof trace can be generated. If the for-
mula is unsatisfiable the empty clause is derived. Otherwise a unit clause can be de-
duced. It contains a single variable which represents the root node of the final BDD.
The trace format is similar to the trace format used for ZCHAFF [14] or MINISAT
[6]. In particular, we do not dump individual resolution steps, but combine piecewise
regular input resolution steps into chains, called trivial resolution steps in [29]. Each
chain has a set of antecedent clauses and one resolvent. The antecedents are treated as
input clauses in the regular input resolution proof of the resolvent. Our trace checker
is able to infer the correct resolution order for the antecedents by unit propagation af-
ter assuming the negation of the resolvent clause. Original clauses and those used for
defining new variables in the extended resolution proof are marked by an empty list of
antecedents. Note that a proof checker for the ordinary resolution calculus is sufficient
for extended resolution proofs, too, as all definitional clauses produced by the extension
rule can be added initially, and then only applications of the resolution rule are required
to be checked.

The ASCII version of the trace format itself is almost identical to the DIMACS
format and since the traces generated by EBDDRES are quite large we also have a
compact binary version, comparable to the one used by MINISAT. Currently the trans-
lation from the default ASCII format into the binary format is only possible through an
external tool. Due to this current limitation we were not able to generate binary traces
where the ASCII trace was of size 1GB or more.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with 2GB main
memory running Debian Sarge Linux. The time limit was set to 1000 seconds, the mem-
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Table 1. Comparison of trace generation with MINISAT and with EBDDRES.

MINISAT EBDDRES
solve trace solve trace trace size bdd recursive bdd and-steps trace

resources size resources gen. ASCII binary nodes all triv. lines red. core chk
sec MB MB sec MB sec MB MB ×103 ×103 ×103 ×103 ×103 ×103 sec

ph7 0 0 0 0 0 0 1 0 3 20 10 10 0 10 0
ph8 0 4 1 0 3 0 3 1 15 67 34 33 0 33 0
ph9 6 4 11 0 3 0 3 1 8 90 45 45 0 45 0

ph10 44 4 63 1 17 1 30 10 136 538 270 269 1 268 2
ph11 887 6 929 1 13 1 21 8 35 670 335 334 1 333 2
ph12 * - - 2 28 1 33 12 31 1150 575 574 1 573 3
ph13 * - - 10 102 8 260 92 850 5230 2615 2614 2 2612 20
ph14 * - - 10 111 7 204 74 166 6554 3278 3276 2 3274 18

mutcb8 0 0 0 0 4 0 4 1 23 73 37 37 0 36 0
mutcb9 0 4 0 0 5 0 12 4 64 193 97 96 0 96 1

mutcb10 0 4 1 1 17 1 35 12 177 577 289 288 1 287 3
mutcb11 1 4 4 3 32 2 89 29 419 1380 691 690 3 686 6
mutcb12 8 4 22 6 62 5 188 64 906 2743 1372 1371 3 1368 13
mutcb13 113 5 244 15 146 12 452 155 2040 6398 3199 3198 8 3190 30
mutcb14 491 8 972 50 578 38 1465 * 6225 20520 10261 10260 20 10240 *
mutcb15 * - - - * - - - - - - - - - -
mutcb16 * - - - * - - - - - - - - - -

urq35 96 4 218 2 28 1 37 13 24 1216 608 608 0 608 3
urq45 * - - - * - - - - - - - - - -

fpga108 0 0 6 47 4 135 47 186 4087 2044 2043 3 2040 11
fpga109 0 0 3 44 2 70 24 83 2218 1109 1109 1 1108 6

fpga1211 0 0 54 874 38 1214 * 1312 33783 16892 16891 41 16850 *
add16 0 0 0 0 4 0 6 2 30 100 51 50 1 49 0
add32 0 0 0 1 9 1 24 8 122 445 223 222 4 217 2
add64 0 4 0 12 146 9 338 112 1393 5892 2948 2944 19 2925 23

add128 0 4 0 - * - - - - - - - - - -

The first column lists the name of the instance. Columns 2-4 contain the data for MINISAT, first
the time taken to solve the instance including the time to produce the trace, then the memory used,
and in column 4 the size of the generated trace. The data for EBDDRES takes up the rest of the
table. It is split into a more general part in columns 5-9 on the left. The right part provides more
detailed statistics in columns 10-15. The first column in the general part of EBDDRES shows the
time taken to solve the instance with EBDDRES including the time to generate and dump the
trace. The latter is shown separately in column 7. The memory used by EBDDRES, column 6, is
linearly related to the number of generated BDD nodes in column 10 and the number of generated
cache lines in column 13. The number of recursive steps of the BDD-and operation occurs in
column 11. Among these steps many trivial base cases occur (column 12) and the number of
cache lines in column 13 is simply the number of non trivial steps. Among the cache lines several
redundant lines occur (column 14) in which the result is equal to one of the arguments. The core
consists of irredundant cache lines necessary for the proof. Their number is listed in the next to
last column (column 15). The last column (column 16) shows the time taken by the trace checker
to validate the proof generated by EBDDRES. The * denotes either time out (>1000 seconds) or
out of memory (>1GB main memory).
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ory limit to 1GB main memory and no size limit on the generated traces was imposed.
Besides the pigeon hole instances (ph*) we used combinatorial benchmarks from [22,
30], more specifically mutilated checker board (mutcb*) and Urquhart formulae (urq*),
FPGA routing (fpga*), and one suite of structural instances from [31], which represent
equivalence checking problems for adder circuits (add*). The latter suite of benchmarks
is supposed to be very easy for BDDs with variable quantification, which is not imple-
mented in EBDDRES. Starting with ZCHAFF [4], these benchmarks also became easy
for search based solvers.

As expected, the experimental data in Tab. 1 shows that even our simplistic ap-
proach in conjoining BDDs to solve SAT, is able to outperform MINISAT on certain
hard combinatorial instances in the ph* and mutcb* family. In contrast to the simpli-
fied exposition in Sec. 3 a tree shaped computation turns out to be more efficient for
almost all benchmarks. Only for one benchmark family (mutcb*) we used the linear
combination. The results of Sec. 3 transfer to the more general case easily.

For comparison we used the latest version 1.14 of MINISAT, with proof generation
capabilities. MINISAT in essence was the fastest SAT solver in the SAT’05 SAT solver
competition. MINISAT in combination with the preprocessor SATELITE [32] was even
faster in the competition, but we could not use SATELITE, because it cannot generate
proofs. The binary trace format of EBDDRES (see column 9 of Tab. 1) is comparable—
though not identical—to the trace format of MINISAT. EBDDRES was able to produce
smaller traces for certain instances. Since for EBDDRES the traces grow almost linear
in the number of steps, we expect much smaller traces for more sophisticated BDD-
based SAT approaches.

Similar to related approaches, EBDDRES does not use dynamic variable ordering
but relies on the choice of a good initial static order instead. We experimented with
various static ordering algorithms. Only for the add* family of benchmarks it turns out
that the variable order generated by our implementation of the FORCE algorithm of
[33] yields better results. For all other families we used the original ordering. It is given
by the order of the variable indices in the DIMACS file. Improvements on running times
and trace size will most likely not be possible from better variable ordering algorithms.
But we expect an improvement through clustering of BDDs and elimination of variables
through existential quantification.

In general, whether BDD-based methods or SAT solvers behave superior turned out
to be highly problem dependent, as other empirical studies also suggest [18, 19, 22].

5 Conclusion and Future Work

Resolution proofs are used in many practical applications for proof checking, debug-
ging, core extraction, abstraction refinement, and interpolation. This paper presents and
evaluates a practical method to obtain extended resolution proofs for conjoining BDDs
in SAT solving. Our results enable the use of BDDs for these purposes instead—or in
combination with—already established methods based on DPLL with clause learning.

As future work the ideas presented in this paper need to be extended to other
BDD operations besides conjunction, particularly to existential quantification. We also
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conjecture that equivalence reasoning and, more generally, Gaussian elimination over
GF(2), can easily be handled in the same way.

Finally we want to thank Eugene Goldberg for very fruitful discussions about the
connection between extended resolution and BDDs.
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A Example Extended Resolution Proof

To further illustrate proof generation and avoidance of tautological clauses, we give an
example showing construction of part (ER-2a) of the ER proof. Let S = (C,D) be an
ordered clause set with C = (ab) and D = (āb). The defining equations for the BDDs
for C and D then are (using variable ordering b > a)

c ↔ (b ? n1 : c0) d ↔ (b ? n1 : d0)
c0 ↔ (a ? n1 : n0) d0 ↔ (a ? n0 : n1)

and the resulting BDD h2 denoting the conjunction of C and D is given by h2 ↔
(b ? n1 : n0). So the first part of our ER proof consists of introducing five new variables
c, c0, d, d0 and h2 together with their defining clauses by five applications of the exten-
sion rule. Then the resolution part follows. The last recursive step to derive c∧ d → h2

looks like this:

(h2bn̄0)
(d̄bd0)

(c̄bc0)

...
(c̄0d̄0n0)

(c̄bd̄0n0)
(c̄d̄bn0)

(c̄d̄h2b)

(n̄1n̄1n1) (c̄b̄n1)
(c̄b̄n̄1n1) (d̄b̄n1)

(c̄d̄b̄n1) (h2b̄n̄1)
(c̄d̄h2b̄)

(c̄d̄h2)

When we apply the rules stated above to avoid tautological clauses (three times rule
(R1)), the whole proof for c ∧ d → h2 reduces to the following:

(h2bn̄0)
(d̄bd0)

(c̄bc0)
(c̄0an0) (d̄0ān0)

(c̄0d̄0n0)
(c̄bd̄0n0)

(c̄d̄bn0)
(c̄d̄h2b)

(c̄b̄n1) (h2b̄n̄1)
(c̄h2b̄)

(c̄d̄h2)


