
PARALLEL CONSISTENCY CHECKING OF
AUTOMOTIVE PRODUCT DATA

WOLFGANG BLOCHINGER, CARSTEN SINZ AND WOLFGANG K̈UCHLIN

Symbolic Computation Group, WSI for Computer Science,
Universiẗat Tübingen, 72076 T̈ubingen, Germany

http://www-sr.informatik.uni-tuebingen.de

This paper deals with a parallel approach to the verification of consistency aspects of an in-
dustrial product configuration data base. The data base we analyze is used by DaimlerChrysler
to check the orders for cars and commercial vehicles of their Mercedes lines. By formalizing
the ordering process and employing techniques from symbolic computation we could estab-
lish a set of tools that allow the automatic execution of huge series of consistency checks,
thereby ultimately enhancing the quality of the product data. However, occasional occurrences
of computation intensive checks are a limiting factor for the usability of the tools. Therefore, a
prototypical parallel re-implementation using our Distributed Object-Oriented Threads System
(DOTS) was carried out. Performance measurements on a heterogeneous cluster of shared-
memory multiprocessor Unix workstations and standard Windows PCs revealed considerable
speed-ups and substantially reduced the average waiting time for individual checks. We thus
arrive at a noticeable improvement in usability of the consistency checking tools.

1 Introduction

Today’s automotive industry manages to supply customers with highly individual-
ized products by configuring each vehicle individually from a very large set of pos-
sible options. E.g., the Mercedes C-class of passenger cars allows far more than a
thousand options, and on the average more than 30,000 cars will be manufactured
before an order is repeated identically. Heavy commercial trucks are even more in-
dividualized, and every truck configuration is built only very few times on average.
The space of possible variations is so great that the validity of each order needs to
be checked electronically against a product data base which encodes the constraints
governing legal combinations of options1. But the maintenance of a data base with
thousands of logical rules is error-prone, especially since it is under constant change
due to the phasing in and out of models. Every fault in the data base may lead to
a valid order rejected, or an invalid (non constructible) order accepted which may
ultimately result in the assembly line to be stopped. Therefore, reaching correctness
of the product data base is a high priority goal.

DaimlerChrysler employs the electronic product data management (EPDM) sys-
tem DIALOG for the configuration of their Mercedes lines. Within this system, a cus-
tomer’s order consists of a basic model class selection together with a set of further
equipment codes describing additional features. Each equipment code is represented
by a Boolean variable, and choosing some piece of equipment is reflected by setting

parco: submitted toWorld Scientific on July 2, 2001 1



the corresponding variable totrue. An order is processed in three major steps, as
depicted in Figure 1. All of these steps are controlled by logical rules of the EPDM
system:

1. Order completion:Supplement the customer’s order by additional (implied)
codes.

2. Constructibility check:Are all constraints on constructible models fulfilled by
this order?

3. Parts list generation:Transform the (possibly supplemented) order into a list of
parts (a bill of materials).

Order‘s Parts List
Customer‘s Order

Supplemented

Customer‘s Order

Checked and Supplemented

Customer‘s Order

?? ?? ��
2 31

Figure 1. Processing a customer’s order.

In order to systematically detect defects in the rule system, we developed a for-
mal model of the ordering process. Thus, we are able to apply an automatic theorem
prover to check certain consistency criteria of the rule base as a whole:

Necessary and inadmissible codes: Are there codes which must invariably appear
in each constructible order? Are there codes which cannot possibly appear in
any constructible order?

Superfluous parts: Are there parts which cannot occur in any constructible order?

Both criteria can be formulated as propositional logic satisfiability (SAT)
problems2, and our interactive consistency support tool BIS3 contains an implemen-
tation of a Davis-Putnam-style4 propositional prover to verify them.

To completely check the above mentioned criteria for only one model class, up
to 10,000 prover runs have to be performed. Most of these automatic proofs are
completed in a few seconds, but there remains a small fraction that requires com-
paratively high run-times of up to several hours. Unfortunately, there is no known
method to estimate the run-times in advance, and in an interactive system like BIS,
users hardly accept long and unpredictable waiting times. It may happen that one of
the first in a sequence of proofs requires a very long run-time, which causes a delay

parco: submitted toWorld Scientific on July 2, 2001 2



in the presentation of the results of all the other proofs: The user does not get any
result until the first proof is completed.

Our parallelization approach therefore is two-fold: we execute a set of proofs in
parallel, and if we hit a long-running proof we additionally process this individual
proof in parallel. Thus, the average waiting time for the result of an individual proof
can be reduced considerably.

Before we describe our parallelization in more detail, we will give an overview
of our software infrastructureDOTS used in this approach. We will then explain our
method in terms of theDOTS system, before presenting experimental results, related
work, and our conclusions.

2 Parallelization Infrastructure

As parallelization infrastructure, our Distributed Object-Oriented Threads System
DOTS5 is used.DOTS is a C++ parallel programming toolkit that integrates a wide
range of different computing platforms into a single system environment for high
performance computing.

2.1 The programming paradigm of DOTS

The main idea ofDOTS is to make the threads programming paradigm used on
shared-memory machines available in a distributed memory environment. With
DOTS, a hierarchical multiprocessor, consisting of a (heterogeneous) cluster of
shared-memory multiprocessor systems, can be efficiently programmed using a sin-
gle paradigm.

The DOTS API provides primitives forDOTS thread creation (dots fork), syn-
chronization with the results computed by otherDOTS threads (dots join), andDOTS
thread cancellation (dots cancel). All primitives can also be used in conjunction with
so calledthread groups. Thread groups are a means of representing relatedDOTS
threads. When applied with thread groups, the semantics of each primitive is au-
tomatically changed to the appropriate group semantics. E.g. when using the join
primitive with a thread group,join-anysemantics will be applied.

2.2 The Architecture of DOTS

Figure 2 gives an overview of the basic components of the architecture ofDOTS.
When aDOTS thread is created with thedots fork primitive, a so calledthread object
is instantiated that represents theDOTS thread within the system during the complete
execution process. It stores all information that is necessary to execute theDOTS
thread.

parco: submitted toWorld Scientific on July 2, 2001 3



Execution Unit

Load Distribution
Strategy

Load Monitoring
Framework

Thread
Transfer

Unit

Execution Unit

Thread
Transfer

Unit

Load Distribution
Strategy

Load Monitoring
Framework

Node A Node B

Figure 2. The DOTS Architecture

Execution Unit

Worker Threads

thread queue

ready queuestransfer

transfer

...

Figure 3. The Execution Unit

DOTS threads are executed within theExecution Unit(see Figure 3). It contains
a thread queue in which newly created thread objects are enqueued. A pool of (OS
native) worker threads dequeue thread objects from the queue and execute the cor-
respondingDOTS threads. The number of worker threads can be determined by the
programmer. Normally, for each node the number of available processors is chosen.
After the execution of aDOTS thread is completed, its thread object is placed into a
ready queue.

To support the execution ofDOTS threads in a distributed environment, the
DOTS architecture includes additional components. TheThread Transfer Unittrans-
fers (serialized) thread objects between queues of execution units residing on differ-
ent nodes.The Load Monitoring Frameworktraces all events concerning the exe-
cution ofDOTS threads and provides status information like the current load or the
current length of the thread queue. Based on the Load Monitoring Framework, dif-
ferent load distribution strategies can be implemented. A load distribution strategy
is responsible for triggering the transfer of thread objects and selecting destination
nodes according to a particular strategy.

3 Parallelization

The presented parallelization approach pursues two major goals. The first goal is to
achieve a total speedup of the computation. A second important goal is to reduce the
average waiting time for the result of a proof in order to improve the usability of the
application.

In the subsequently described procedure, hard proofs are determined by setting
a limit for the computation time for a proof. If the time for a proof has expired,
it is considered as a hard proof and treated separately by executing it in parallel.
Consequently, the parallel execution is organized in two phases:

• Phase 1: Concurrent execution of proofs.

parco: submitted toWorld Scientific on July 2, 2001 4



A timeout is set to suspend (long-running) hard proofs. Hard proofs are queued
along with their current execution state.

• Phase 2: Parallel execution of the queued hard proofs.
Each queued proof is treated individually in parallel, starting from its previously
saved state computed in phase 1.

The execution of phase 1 is organized in a master-slave approach. For all proofs,
the root thread creates correspondingDOTS threads that are executed concurrently.
The computed results are joined by the root thread and displayed. In the case of
a timed out hard proof, its current execution state is joined and queued for later
execution in phase 2.

The realization of phase 2 requires more sophisticated techniques. We adopted
the parallelization scheme for the Davis-Putnam algorithm presented by Zhanget
al.6. Basically, we are dealing with the parallelization of a combinatorial search
problem. This implies that the search space has to be divided into mutually disjoint
portions to be treated in parallel. However, a (static) generation of balanced sub-
problems is not feasible, since it is impossible to predict in advance the extent of the
problem reduction delivered by the Davis-Putnam procedure.

Instead, a dynamic search space splitting approach is carried out. To start the
execution of a queued hard proof the root thread forks oneDOTS thread that has the
entire search space assigned. During the whole computation of phase 2, allDOTS
threads periodically monitor the length of the local thread queue (see Section 2.2).
If the thread queue is empty, a newDOTS thread is forked. The parent thread splits
off a region of its search space and assigns it to the newDOTS thread. Details of the
applied search space splitting heuristics can be found in Zhanget al.6. To prevent
uncontrolled splitting actions, a predefined time interval has to be waited before the
next split can be carried out by theDOTS thread. The newly createdDOTS thread is
queued and can be executed by another local worker thread or can be transferred to
other nodes (see Section 3.1).

The described splitting procedure generates subproblems on demand. This en-
sures that new subproblems are generated during the initialization phase of the com-
putation to exploit the available processing capacity and every time a subproblem
has been completely processed without finding a solution.

After forking the initialDOTS thread, the root thread callsdots join to wait for
the createdDOTS threads. AllDOTS threads (except the initial one) are created with
thedots subfork primitive. This means that they can be joined by the root thread (and
are not joined by their actual parent threads). The result of aDOTS thread indicates
whether a problem solution was found within its assigned search region or not. The
processing of a hard proof is completed either if all createdDOTS threads have been
joined without returning a solution, or when the firstDOTS thread that has found a

parco: submitted toWorld Scientific on July 2, 2001 5



solution is joined. In the latter case, all remainingDOTS threads are immediately
canceled to make all processing capacities available for the next queued hard proof.

3.1 Load Distribution

As described in Section 2.2, new load distribution strategies can easily be integrated
into DOTS using the Load Monitoring Framework. For the presented application,
a customized load distribution strategy was realized that reflects the division of the
computation in two phases.

In both phases, a work-stealing strategy is applied, i.e. when all worker threads
on a node are idle, the distribution strategy tries to transfer thread objects from the
thread queues of other nodes.

However, the phases are treated differently in the way how the victim node is
chosen. Whereas in phase 1 always the master node is selected as victim (allDOTS
threads are created by the master in phase 1), victims are chosen randomly in phase
2. It has been shown that applying a randomized work-stealing strategy to distribute
the load in backtrack search algorithms is likely to yield a speedup within a constant
factor from optimal (when all solution are required)7.

Since this approach does not involve central components for load distribution,
the scalability of the parallel application is improved.

4 Experimental Results

The parallel environment used for the presented performance measurements con-
sisted of a cluster made up of the following components (all nodes were connected
with 100 Mbps switched Fast-Ethernet).

• 2 Sun Ultra E450, each with 4 UltraSparcII processors (@400 MHz) and 1 GB
of main memory, running under Solaris 7.

• 4 PCs, each with 1 PentiumII processor (@400MHz) and 128 MB of main
memory, running under Windows NT 4.0.

We have applied the necessary and inadmissible codes checks as well as the su-
perfluous parts checks on configuration data for the C-class and E-class limousines.
Tables 1 and 2 show the measured run-times (wall-clock times) in seconds. A timeout
of 20 seconds for detecting hard proof was chosen. The tables give sequential run-
times of the prover executed on an E450, on a PC, and the corresponding weighted
mean of the sequential run-times. Additionally, run-times of three parallel program
runs on all processors are shown. The parallel execution of the prover can exhibit a

parco: submitted toWorld Scientific on July 2, 2001 6



Table 1. Results for the Mercedes C-class.

C-class limousines (code checks)
proofs: 520 hard proofs: 4

run-time waiting time

seq (E450) 1,417.0 654.6
seq (PC) 1,738.0 800.3
seq (mean) 1,524.0 703.2
parallel 158.0 66.8
(3 runs) 162.0 66.6

164.0 67.1

C-class limousines (part checks)
proofs: 512 hard proofs: 6

run-time waiting time

seq (E450) 10,447.0 5,459.5
seq (PC) 13,667.0 7,167.1
seq (mean) 11,520.3 6,028.7
parallel 1,026.0 100.6
(3 runs) 1,043.0 100.8

1,039.0 100.8

Table 2. Results for the Mercedes E-class.

E-class limousines (code checks)
proofs: 525 hard proofs: 6

run-time waiting time

seq (E450) 1,935.0 956.1
seq (PC) 2,281.0 1,123.9
seq (mean) 2,050.3 1,012.0
parallel 253.0 111.4
(3 runs) 245.0 110.6

252.0 111.5

E-class limousines (part checks)
proofs: 500 hard proofs: 6

run-time waiting time

seq (E450) 40,186.0 16,370.5
seq (PC) 51,769.0 21,500.4
seq (mean) 44,047.0 18,080.5
parallel 2,198.0 110.4
(3 runs) 2,174.0 109.3

2,192.0 108.8

non-deterministic behavior, for this reason we don’t give averaged times or speedup-
values.
The average waiting times were calculated by

#proofs∑

i=1

waiting time(i)
#proofs

,

wherewaiting time(i) is defined as the time from the start of the whole set of tests
until the result of proofi is reported.

Since some of the detected hard problems in the considered examples turned
out to be satisfiable, the parallel execution of these proofs can lead to super-linear
speedups and may consequently greatly reduce the total run-time as well as the mean
waiting time for a proof.

5 Related Work and Conclusion

In the realm of industrial verification, Spreeuwenberget al.8 present a tool to verify
knowledge bases built with Computer Associate’s Aion9. Concerning parallel satis-
fiability checking, PSATO of Zhanget al.6 is a distributed prover for propositional

parco: submitted toWorld Scientific on July 2, 2001 7



logic on a network of workstations. In contrast to our work, a master-slave model
is applied, where a central master is responsible for the division of the search space
and for assigning the subtasks to the slaves.

We see the main contribution of our paper in presenting an industrial real-
world application of symbolic computation where employment of parallelization
techniques greatly enhances usability by reducing the user’s waiting time to an ac-
ceptable amount. Sophisticated parallel execution and scheduling methods almost
manage to overcome the unpredictability of proof times.

References

1. E. Freuder. The role of configuration knowledge in the business process.IEEE
Intelligent Systems, 13(4):29–31, July/August 1998.

2. W. Küchlin and C. Sinz. Proving consistency assertions for automotive product
data management.J. Automated Reasoning, 24(1–2):145–163, February 2000.

3. C. Sinz, A. Kaiser, and W. K̈uchlin. Detection of inconsistencies in complex
product model data using extended propositional SAT-checking. InFLAIRS’01,
2001. To appear.

4. M. Davis and H. Putnam. A computing procedure for quantification theory. In
Journal of the ACM, volume 7, pages 201–215, 1960.

5. Wolfgang Blochinger, Wolfgang K̈uchlin, Christoph Ludwig, and Andreas We-
ber. An object-oriented platform for distributed high-performance symbolic
computation.Mathematics and Computers in Simulation, 49:161–178, 1999.

6. H. Zhang, M. P. Bonacina, and J. Hsiang. PSATO: A distributed propositional
prover and its application to quasigroup problems.Journal of Symbolic Com-
putation, 21:543–560, 1996.

7. R. M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search
and branch-and-bound computation.Journal of the ACM, 40(3):765–789, July
1993.

8. S. Spreeuwenberg, R. Gerrits, and M. Boekenoogen. VALENS: A Knowledge
Based Tool to Validate and Verify an Aion Knowledge Base. InECAI 2000,
14th European Conference on Artificial Intelligence, pages 731–735. IOS Press,
2000.

9. S. Garone and N. Buck.Capturing, Reusing, and Applying Knowledge for
Competitive Advantage: Computer Associate’s Aion. International Data Cor-
poration, 2000. IDC White Paper.

parco: submitted toWorld Scientific on July 2, 2001 8


