
Computation of Renameable Horn Backdoors?

Stephan Kottler, Michael Kaufmann, and Carsten Sinz

Eberhard Karls Universität Tübingen, Wilhelm–Schickard–Institute, Tübingen,
Germany

Abstract. Satisfiability of real-world Sat instances can be often decided
by focusing on a particular subset of variables - a so-called Backdoor Set.
In this paper we suggest two algorithms to compute Renameable Horn
deletion backdoors. Both methods are based on the idea to transform
the computation into a graph problem. This approach could be used as
a preprocessing to solve hard real-world Sat instances. We also give some
experimental results of the computations of Renameable Horn backdoors
for several real-world instances.

1 Introduction

It is a well known phenomenon that Sat instances evolving from industrial
applications can be solved much faster than this could be expected from the
theoretical point of view. This allows current state-of-the-art solvers for dealing
with instances that consist of up to hundreds of thousands variables. To decide
satisfiability for industrial instances it is often sufficient to focus on a partic-
ular and primarily small subset of variables - a so-called backdoor set. In the
groundbreaking work [20] Williams, Gomes and Selman already gave examples
of instances with approximately 6,700 variables and nearly 440,000 clauses that
exhibit backdoor sets with only 12 variables. Ruan, Kautz and Horvitz showed
empirically that an extension of the concept of backdoor sets is a good predictor
for the hardness of Sat problems [16]. Moreover, Interian showed that random
3-Sat instances exhibit backdoor sets with 30% to 65% of all variables [10].

Knowing a small backdoor set for an instance in advance could speed up
the solving process extraordinarily. However, according to the work of Szeider
[18], it is in general not possible to decide in reasonable time whether a given
Sat instance exhibits a backdoor with limited size with respect to a DPLL based
subsolver (see [7, 6]). Throughout this paper we consider a variant of strong back-
doors (see [20]), so-called deletion backdoors [13, 19]:
A backdoor is defined with respect to a base class C of formulas that can be recog-
nized and solved in polynomial time. B ⊂ V is a deletion backdoor if the formula
F −B belongs to C, where F −B denotes the result of removing all occurrences
(both positive and negative) of the variables in B from the clauses of formula F .

? This work was partly supported by DFG-SPP 1307, project “Structure-based Algo-
rithm Engineering for SAT-Solving”

Nishimura, Ragde and Szeider proved that every deletion backdoor is a strong
backdoor, if the base class C is clause-induced (F ∈ C ⇒ F ′ ∈ C for all F ′ ⊆ F)
[13]. For the computation of backdoors with base class Horn and 2-Sat the
same authors proved fixed-parameter tractability. Hence, the question whether
a formula exhibits a Horn backdoor (respectively a Binary backdoor) with at
most k variables can be answered in time that is only exponential in k but
not in the number of variables [12]. Moreover, Interian approximated backdoors
with respect to the base classes Horn and 2-Sat for random 3-Sat instances [10].

In this article we study the computation of Renameable Horn backdoors.
Thus, the base class C is Renameable Horn. A formula is Horn, if every clause
contains at most one positive literal and it is Renameable Horn (RHorn) if it
can be renamed to a Horn formula by flipping the literals of some variables.
Paris et al. used a two phase approach to compute RHorn backdoors as a pre-
processor in a modification of the zChaff Sat solver [15]. In a first step the
algorithm tries to increase the number of Horn clauses by flipping the literals of
some variables in a local search manner. Secondly, variables are chosen for the
backdoor in a greedy fashion to make all non-Horn clauses become Horn.
In a recent work Dilkina, Gomes and Sabharwal formulated linear programs
to compute optimal RHorn backdoors [9]. An important result is that smallest
RHorn backdoors can be exponentially larger than general strong backdoors.

2 Two Approaches to compute RHorn Backdoors

The computation of RHorn backdoors of both approaches presented in this arti-
cle is based on an equivalent graph problem. The second approach approximates
the minimum RHorn backdoor with an approximation ratio that is equal to the
size of a so-called conflict loop in the graph. Furthermore, when using the second
algorithm, the exact approximation ratio is known as soon as the RHorn back-
door is computed. In the following subsection we briefly describe how to trans-
form the problem of finding RHorn backdoors to a problem on directed graphs.

Renameable Horn Backdoors as Graph Problem For a given formula F
we create a so-called dependency graph G = (VG, EG) with 2 ∗ |V| vertices. Each
variable vi entails two vertices k0

i and k1
i that represent the facts that variable

vi has to be renamed (k0
i) respectively must not be renamed (k1

i) in order to
make F a Horn formula. The directed edges of G represent the implications of
renaming or not renaming variables, according to the clauses of F . A RHorn de-
pendency graph can be created in time O(m∗ size of max clause2) by traversing
all possible pairs of literals for each of overall m clauses.
Lewis introduced a method to decide whether a given formula F belongs to class
Renameable Horn [11]. The conditions that have to be satisfied to rename F to
a Horn formula are formulated as a 2-SAT instance S. It was proved that F
is Renameable Horn iff S is satisfiable [11]. The described dependency graph
corresponds to the implication graph in [3], that could be used to solve the 2-
SAT instance S. In difference to the algorithm in [3] our computations do not

deal with strongly connected components. However, the following properties of
implication graphs that are needed for our algorithms can be found in [3, 4, 14]
or derived straightforwardly from these results.

Definition 1. We call a vertex kq
i (q ∈ {0, 1}) a conflict vertex if there is a

path from kq
i to k

(q⊕1)
i . A variable xi ∈ V has a conflict loop if k0

i and k1
i are

both conflict vertices.

Corollary 1. If there is no path from kq
i to k

(q⊕1)
i then none of the vertices that

can be reached from kq
i is a conflict vertex.

Lemma 1. A formula F is Renameable Horn iff there exists no variable that
has a conflict loop in the dependency graph.

Corollary 2. If variable xi ∈ V does not have a conflict loop than neither vertex
k0

i nor vertex k1
i can be involved in a conflict loop of any other variable.

According to Lemma 1 the task to compute a RHorn backdoor can be ac-
complished by destroying all conflict loops in the appropriate dependency graph.
In particular, we aim to delete a minimal amount of variables from the Boolean
formula such that the deletion of the according vertices and their incident edges
results in a dependency graph without any conflict loops. We call the set of
variables involved in a conflict loop a conflict set. It is important to notice that
a conflict loop and its conflict set do not necessarily have to have the same size.

A heuristic to destroy all conflict loops The first approach mainly considers
small conflict sets and variables that occur in many of these conflict sets. The
implementation is based on the function computeConflictSets(G,U) that
computes one conflict set for each variable in U ⊆ V with respect of the depen-
dency graph G. For each variable xi in U a conflict loop is computed by checking
whether there is a path from vertex k0

i to k1
i and vice versa. All variables that

occur in one of the two computed conflict paths constitute the conflict set for
variable xi. If, on the other hand there is no path from kq

i to k
(q⊕1)
i (q ∈ {0, 1})

then we know by Corollary 1 that none of the vertices Ri ⊆ VG that can be
reached from vertex kq

i can be a conflict vertex. By Corollary 2 we can disregard
the according variables (R) of the vertices in Ri for the remaining computation.
Thus, for each variable in R both representing vertices and their incident edges
can be deleted from the dependency graph.
The entire computation of a RHorn backdoor starts with creating the depen-
dency graph and computes a small conflict set for each variable of the formula.
It starts with an empty backdoor set B and chooses greedily one variable for B
that occurs most frequently in all known conflict sets S. Ties are broken in favor
of variables that occur in small conflict sets. We have applied different strategies
to choose a variable for the backdoor, but none of them clearly outperformed
the described one. The according vertices of the chosen variable and their inci-
dent edges are removed from the dependency graph. New conflict sets are then
computed for those variables whose conflict loops were destroyed. At this point
the graph may shrink rapidly for some instances, due to the simplification rules
in procedure computeConflictSets. The algorithm terminates as soon as all
conflict loops are destroyed.

Approximating minimal Renameable Horn Backdoors The second ap-
proach to compute Reanameable Horn backdoors basically adapts the idea of [8]
to approximate a weighted Feedback Vertex Set in a directed graph. The
Algorithm is divided into two phases. In the first phase conflict loops in the graph
are destroyed by always taking all related variables of a chosen conflict loop for
the backdoor. In the second phase the algorithm tries to shrink the backdoor
by reinserting the related vertices and edges of some backdoor variables into the
graph. Since an optimal backdoor has to contain at least one variable of any con-
flict set, it is evident that always taking all variables of any remaining conflict set
into the backdoor (phase 1) already approximates the optimal RHorn backdoor
by a factor that is smaller or equal to the size of the biggest chosen conflict set.
Due to the fact that in the second phase of the algorithm the found backdoor
can be only improved the approximation ratio applies for the entire Algorithm.
To keep the approximation ratio small it is reasonable to choose as small as
possible conflict loops in the first phase.
Using the reachability data structure introduced in [8] the time to destroy all
conflict loops in a given graph can be bounded by O(|V|3) for both algorithms.
However, for industrial Sat instances the computation benefits from the fact
that on the one hand, at the beginning, small conflict paths are computed which
requires clearly less than the worst-case bound. On the other hand, at the end,
the number of vertices and edges has substantially decreased (see section 3).

3 Some Experimental Results
In order to get an idea of the sizes of backdoors of real-world Sat instances we
computed RHorn backdoors for several instances in [1, 2, 17]. For the computa-
tion of Horn and Binary backdoors it turned out that a simple greedy strategy
yields the best results for most instances. For Binary backdoors we always choose
that variable for the backdoor that reduces the size of the most clauses with more
than two literals, terminating as soon as all clauses are binary. The computation
of Horn backdoors can be done analogously. A few results are listed in Fig. 1.
Especially the last two rows, the results for the two instances eq.atree.braun*
have to be emphasized. Though relatively small, both instances could not be
solved by any solver in the sat competition 2007 within the allowed time (10,000
seconds). Our heuristic found a RHorn backdoor with 761 variables for the in-
stance eq.atree.braun.13* in less than four minutes. Although a solving process
cannot examine all 2761 Renameable Horn instances, this still reduces the amount
of ’relevant’ variables by more than 62%.
It is also worth to mention the good results for instances from Car Configura-
tion [17]. E.g., the optimal RHorn backdoors for the two instances C208 FA*
contain 4.51% resp. 7.46% of all variables [9]. For these instances the heuristic
found backdoors with 4.73% resp. 8.21% of all variables (lines 2,3).
An alternative approach to compute RHorn backdoors was used in [15] as a pre-
processor in a modified zChaff Sat solver. For the most instances that are given
in [15] our algorithm could discover slightly smaller RHorn backdoors. However,
for a few instances like e.g. dp10s10* with 8,372 variables our heuristic did con-
siderably better: The local search strategy found a backdoor with 2,635 variables

[15], whereas the described heuristic discovered a backdoor with 1,543 variables.
The reason for this might be that unlike the local search approach, a compu-
tation based on the dependency graph is mainly independent of the number of
renamings that have to be made to make the remaining instance F − B Horn.

Instance # Vars # Cls Binary Horn RHorn
C169 FW 1402 1982 56 59 2
C208 FA SZ 120 1608 5278 161 168 76
C208 FA UT 3254 1876 7334 419 434 154
apex7 gr rcs w5.shuffled.cnf 1500 11695 900 832 635
dp10s10.shuffled.cnf 7759 23004 2005 3256 1543
vda gr rcs w9.shuffled.cnf 6498 130997 5054 4695 4262
cnf-r4-b4-k1 9528 59248 8363 4569 576
comb3 4774 16331 1641 2095 1119
dp06u05 2055 6053 560 889 457
ezfact256 1 49153 324873 24092 32936 35998
f2clk 30 20458 59559 7109 7813 3338
par32-4 3176 10313 463 1658 1290
cnf-r4-b1-k1.1-03-416 2424 14812 2113 1141 174
f2clk 40-03-424 27568 80439 9597 10562 4514
eq.atree.braun.12.unsat 1694 5726 686 1003 647
eq.atree.braun.13.unsat 2010 6802 822 1194 761

Fig. 1. Computation of different Backdoors. The three rightmost columns indicate the
sizes of the found backdoors with base classes 2-Sat, Horn and RHorn. The smallest
backdoor of an instance is highlighted with bold font.

A further interesting aspect when analyzing the computation of RHorn back-
doors for industrial Sat instances is the simplification of the dependency graph.
In Fig. 2 it can be observed that the simplification of the dependency graphs
of instances of the same family behaves similar. For easy instances like those of
the family C220 FV* (left plot) there are several break downs where numbers of
vertices can be disregarded and hence deleted according to Corollary 2. On the
other hand the computation of backdoors for the very hard real-world instances
of the family eq.atree.braun* (right plot) nearly behaves like the computations
for generated instances. Applying Corollary 2 is practically impossible in the
first two-thirds of the computation.

4 Conclusions and Further Work

In this paper we have presented two approaches to compute RHorn backdoors
for CNF formulas in polynomial time. Both approaches are based on the idea
to destroy conflict loops in a RHorn dependency graph. We think that this
idea could be used as a preprocessing step for solving small but hard real-world
Sat instances in order to drastically reduce the amount of variables to consider
for the solving process. For the more general case where a minimal amount of
variables has to be deleted in order to make a 2-Sat instance satisfiable, the
idea of destroying conflict loops in the implication graph of [3] can be adapted.
Furthermore, it is still an open problem if the computation of a minimum
RHorn backdoor is fixed parameter tractable. In 2007 the Feedback Vertex
Set problem in directed graphs was proved to be in FPT [5]. It might be possi-
ble to adapt their approach for RHorn dependency graphs to remove vertices in
order to destroy all conflict loops in the graph.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

nu
m

be
r o

f v
er

tic
es

number of chosen backdoor variables

C220_FV_SZ_55
C220_FV_SZ_39

C220_FV_SZ_114
C220_FV_SZ_121

C220_FV_SZ_46
C220_FV_RZ_12
C220_FV_RZ_65
C220_FV_RZ_14
C220_FV_RZ_13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

nu
m

be
r o

f v
er

tic
es

number of chosen backdoor variables

eq.atree.braun.13.unsat
eq.atree.braun.12.unsat
eq.atree.braun.11.unsat
eq.atree.braun.10.unsat

eq.atree.braun.9.unsat
eq.atree.braun.8.unsat
eq.atree.braun.7.unsat

Fig. 2. Simplification of dependency graphs for different families of Sat instances from
[2, 17]. The y-axis indicate the number of vertices in the graph and the x-axis indicate
the number of variables that are chosen for the present backdoor.

References

1. Dimacs. ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/.
2. The international SAT competition. www.satcompetition.org, 2002-2007.
3. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the

truth of certain quantified boolean formulas. Inf. Proc. Lett., 8:121–123, 1979.
4. J. Buresh-Oppenheim and D. G. Mitchell. Minimum witnesses for unsatisfiable

2CNFs. In SAT, 2006.
5. J. Chen, Y. Liu, and S. Lu. Directed feedback vertex set problem is fpt. In Structure

Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, 2007.
6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. Commun. ACM, 5(7):394–397, 1962.
7. M. Davis and H. Putnam. A computing procedure for quantification theory. J.

ACM, 7(3):201–215, 1960.
8. C. Demetrescu and I. Finocchi. Combinatorial algorithms for feedback problems

in directed graphs. Inf. Process. Lett., 86(3):129–136, 2003.
9. B. Dilkina, C. P. Gomes, and A. Sabharwal. Tradeoffs in the complexity of backdoor

detection. In Principles and Practice of Constraint Programming - CP 2007, 2007.
10. Y. Interian. Backdoor sets for random 3-sat. In SAT, 2003.
11. H. R. Lewis. Renaming a set of clauses as a horn set. J. ACM, 25:134–135, 1978.
12. N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to

Horn and Binary clauses. In SAT, 2004.
13. N. Nishimura, P. Ragde, and S. Szeider. Solving #SAT using vertex covers. Acta

Informatica, 44(7-8):509–523, 2007.
14. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
15. L. Paris, R. Ostrowski, P. Siegel, and L. Sais. Computing horn strong backdoor

sets thanks to local search. In ICTAI ’06. IEEE Computer Society, 2006.
16. Y. Ruan, H. A. Kautz, and E. Horvitz. The backdoor key: A path to understanding

problem hardness. In AAAI, pages 124–130, 2004.
17. C. Sinz. SAT benchmarks. www-sr.informatik.uni-tuebingen.de/˜sinz/DC, 2003.
18. S. Szeider. Backdoor sets for dll subsolvers. J. Autom. Reasoning, 35:73–88, 2005.
19. S. Szeider. Matched formulas and backdoor sets. In SAT, 2007.
20. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In

IJCAI, 2003.

