
Extended Resolution Proofs
for Symbolic SAT Solving

Toni Jussila, Carsten Sinz, and Armin Biere
Johannes Kepler University Linz, Austria

Why Propositional Logic Proofs?

 SAT-solvers and BDDs commercially
employed
 Hardware verification

(Bounded Model Checking)
 Product configuration

 Yes/No answer of solvers not sufficient
 Counterexample or proof needed
 Used for abstraction refinement, interpolant

computation, proof checking, diagnosis, ...

 Given: F = C1∧...∧Cn , a formula in CNF
 Method: Build a BDD B for F by BDD-and and BDD-

exists operations as follows:
 take a variable ordering
 put all clauses Ci to buckets (one bucket for each

variable)
 process buckets (variables) one by one

 build conjunction of clauses (BDD-and)
 eliminate variable by existential quantification

(BDD-exists)
 put resulting BDD to the right bucket

Symbolic SAT-Solving

Symbolic SAT Solving (II)

 Fact: B=0 iff F unsatisfiable
 Question: How to build refutation proof for F if B=0?
 Solution: Use Extended Resolution as proof system.

Extended Resolution (ER)
 Resolution calculus: one inference rule

 Extended Resolution: adds extension rule
 Introduces new variable and clauses.
 „Definitions“

 Goal: derive empty clause [Tseitin, 1970]

C,D: clauses
l: literal occurring positively in C
 and negatively in D

x: new variable (neither occurring
 in F nor in current clause set)
F: arbitrary formulaCNF(x ↔ F)

What Definitions?

 Add a new variable for every BDD node that
occurs in the computation.

 For BDD node f, definition is
 f ↔ (x ? f1 : f0)
 where f1 and f0 are the children of f.
 as formula: (x → f1)∧(¬x → f0)
 as clauses: (¬f ¬x f1), (¬f x f0),

(f ¬x ¬f1), (f x ¬f0)

ER Proof Generation Outline
(for unsatisfiable F = C1∧...∧Cn)
1. Take first bucket U.
2. Compute BDDs Bi for all clauses Ci in U.
3. Add definitions for all BDD nodes occurring in any Bi.

(convention: let bi be ER variable of the top node of Bi)
4. Produce ER proofs F |– bi for all clauses in U.
5. Compute the BDD of the conjunction of the clauses of

U. H2=BDD-and(B1, B2) Hi=BDD-and(Bi, Hi-1)
6. Produce ER proofs F |– hi for all hi.

ER Proof Generation Outline (II)

7. Eliminate root variable, ie. compute BDD
Hi'=BDD-exists(Hi).

8. Produce ER proofs F |– hi' for all hi'.
9. Let U = next_bucket() and go to 2.

ER Proofs from BDDs:
Conjunctions (BDD-and)
 Build proof of f ∧ g → h recursively

 from f0 ∧ g0 → h0 and f1 ∧ g1 → h1.

Complexity: Requires 7 resolutions for each recursive
step.

ER Proofs from BDDs:
Quantification (BDD-exists)
 Given f (children f0 and f1), let ∃f be the BDD

where root variable of f existentially quantified.
 First prove f0 ∨ f1 → ∃f, clauses (¬f0 ∃f),(¬f1 ∃f).
 Then prove f → ∃f, ie. (¬f ∃f).

Implementation: EBDDRES
 Performs BDD computations.
 Generates extended resolution proofs fully

automatically.
 Good performance on some SAT instances

that are hard for DPLL/resolution-based
provers (e.g. pigeon hole).

 Proof-checker for resolution-based solvers can
easily be adapted for ER proofs.
 Only non-cyclicity test for extension rule

applications has to be added.

Summary

 Extends work of Biere & Sinz 2006 with
existential quantification.

 Extended resolution proofs as generic
proof format.

 Enabler for further applications of extended
resolution.

