Extended Resolution Proofs for Symbolic SAT Solving

Toni Jussila, Carsten Sinz, and Armin Biere Johannes Kepler University Linz, Austria

Why Propositional Logic Proofs?

- SAT-solvers and BDDs commercially employed
 - Hardware verification (Bounded Model Checking)
 - Product configuration

- Yes/No answer of solvers not sufficient
 - Counterexample or proof needed
 - Used for abstraction refinement, interpolant computation, proof checking, diagnosis, ...

Symbolic SAT-Solving

- Given: $F = C_1 \land \dots \land C_n$, a formula in CNF
- Method: Build a BDD B for F by BDD-and and BDDexists operations as follows:
 - take a variable ordering
 - put all clauses C_i to buckets (one bucket for each variable)
 - process buckets (variables) one by one
 - □ build conjunction of clauses (BDD-and)
 - eliminate variable by existential quantification
 (BDD-exists)
 - put resulting BDD to the right bucket

Symbolic SAT Solving (II)

□ Fact: *B*=0 *iff F* unsatisfiable

- **Question:** How to build refutation proof for *F* if B=0?
- □ Solution: Use Extended Resolution as proof system.

Extended Resolution (ER)

Resolution calculus: one inference rule

 $\frac{C\dot{\cup}\{l\} \quad \{\bar{l}\}\dot{\cup}D}{C\cup D}$

C,*D*: clauses

l: literal occurring positively in *C* and negatively in *D*

Extended Resolution: adds extension rule

Introduces new variable and clauses.

"Definitions"

 $CNF(x \leftrightarrow F)$

x: new variable (neither occurring in *F* nor in current clause set)*F*: arbitrary formula

Goal: derive empty clause

[Tseitin, 1970]

ER Proof Generation Outline (for unsatisfiable $F = C_1 \land ... \land C_n$)

- 1. Take first bucket U.
- **2**. Compute BDDs B_i for all clauses C_i in U.
- **3**. Add definitions for all BDD nodes occurring in any B_i . (convention: let b_i be ER variable of the top node of B_i)
- **4.** Produce ER proofs $F \mid -b_i$ for all clauses in U.
- 5. Compute the BDD of the conjunction of the clauses of $U. H_2$ =BDD-and(B_1, B_2) H_i =BDD-and(B_i, H_{i-1})
- 6. Produce ER proofs $F \mid -h_i$ for all h_i .

ER Proof Generation Outline (II)

- 7. Eliminate root variable, ie. compute BDD H_i '=BDD-exists(H_i).
- 8. Produce ER proofs $F \vdash h_i$ for all h_i .
- 9. Let $U = next_bucket()$ and go to 2.

- $\square \text{ Build proof of } f \land g \twoheadrightarrow h \text{ recursively}$
 - from $f_0 \land g_0 \rightarrow h_0$ and $f_1 \land g_1 \rightarrow h_1$.

Complexity: Requires 7 resolutions for each recursive step.

ER Proofs from BDDs: Quantification (BDD-exists) Given f (children f_0 and f_1), let $\exists f$ be the BDD where root variable of f existentially quantified. First prove $f_0 \lor f_1 \rightarrow \exists f$, clauses $(\neg f_0 \exists f), (\neg f_1 \exists f)$. Then prove $f \rightarrow \exists f$, ie. $(\neg f \exists f)$.

$$\frac{(\bar{f}xf_0) \quad (\bar{f}_0 \exists f)}{(\bar{f}x \exists f)} \quad \frac{(\bar{f}_1 \exists f) \quad (\bar{f}\bar{x}f_1)}{(\bar{f}\bar{x} \exists f)}}{(\bar{f}\bar{x} \exists f)}$$

Implementation: EBDDRES

- Performs BDD computations.
- Generates extended resolution proofs fully automatically.
- Good performance on some SAT instances that are hard for DPLL/resolution-based provers (e.g. pigeon hole).
- Proof-checker for resolution-based solvers can easily be adapted for ER proofs.
 - Only non-cyclicity test for extension rule applications has to be added.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		M	INIS	AТ	EBDDRES							EBDDRES, quantification						
		so	lve	trace	so	olve		trac	е.		bdd	so	lve		trac	е		bdd
ſ		reso	urces	size	reso	urces	gen	ASCII	bin	chk	nodes	reso	urces	gen	ASCII	bin	chk	nodes
	1.7	sec	MB	MB	sec	MB	sec	MB	MB	sec	×10°	sec	MB	sec	MB	MB	sec	×10 ³
	ph7	0	0	0	0	0	0	1	0	0	3	0	5	0	12	4	1	60
ſ	ph8	0	4	11	0	0	0	3	1	0	15		14	1	49	15	4	230
	pn9	0	4	62	1	17	1	3	10	0	126	20	214	4	180	- 59 *	14	2074
	ph10	44 004	4	03	1	17	1	30	10	2	130	20	214	10	083	-1-	-1-	2974
	ph11	884 *	0	929	1	13	1	21	12	2	30	-	*	-	-	-	-	-
	ph12	*	-	-	10	126	1	260	02	20	850	-	-1- 3K	-	-	-	-	-
	ph13	*	-	-	0	111	7	200	9Z 74	19	166	-	×	-	-	-	-	-
	pn14	0	-	-	9	111	· (204	14	10	100	-	0	-	-	-	-	16
	mutch0	0	4	0	0	5	0	2	2	0	27	0	1	0	3	2	0	25
ľ	mutch10	0	4	1	0	2	0	11		1	58	0	45	0	11		1	59
	mutch11	1	4	4	1	17	1	31	10	2	153	1	8	1	23	7	2	123
	mutch12	8	4	22	2	32	2	69	22	5	320	1	13	1	38	12	3	198
ſ	mutch13	112	5	244	7	126	5	181	61	13	817	2	24	2	70	22	5	347
	mutch14	488	8	972	14	250	10	393	132	27	1694	4	37	3	127	40	8	621
	mutch15	*	-		36	498	26	1009	*	*	4191	6	52	5	211	67	14	1012
	mutch16	*	_	_	-	*	20	1000	_	_		12	104	9	391	126	26	1821
	ura35	95	4	218	2	22	1	37	13	3	24	0	0	0	1	0	0	5
ľ	urq45	*	-	210	-	*	1		10	_		ŏ	0	ŏ	1	ŏ	ŏ	10
	urq15	*	_	_	_	*	_	_	-	_	_	Ő	0	ŏ	2	1	0	15
	urq65	*	_	_	_	*	-	_	_	_	_	Ő	4	ŏ	6	2	0	34
	ura75	*	_	_	-	*	-	_	_	_	_	Ő	4	ŏ	7	2	0	39
	ura85	*	_	_	-	*	-	-	_	-	_	Õ	5	Ő	10	3	1	59
	fpga108	0	2		6	47	4	135	47	11	186	8	92	6	239	77	18	1088
	fpga109	0	0		3	44	2	70	24	6	83	10	114	8	323	105	9	1434
	fpga1211	0	0		53	874	37	1214	*	*	1312	-	*	_	-	_	-	-
	add16	0	0	0	0	4	0	6	2	0	30	0	3	0	4	2	0	26
	add32	0	Ő	0	1	9	1	24	8	2	122	1	7	0	19	6	1	106
	add64	0	0	0	12	146	9	338	112	23	1393	12	95	9	393	127	26	1839
	add128	0	4	0	-	*	-	-	_	-	-	-	*	_	-	-		-

Summary

- Extends work of Biere & Sinz 2006 with existential quantification.
- Extended resolution proofs as generic proof format.
- Enabler for further applications of extended resolution.