Murali Sitaraman, Durga P. Gandi
Clemson University

Wolfgang Kiichlin, Carsten Sinz
Universitat Tibingen

Bruce W. Weide
The Ohio State University

Correspondence: murali@cs.clemson.edu

This research is funded in part the U. S. National Science Foundation
grant CCR-0113181.




- DEET is Best Bug Repellent - New England Journal of
Medicine, 2002.

+ DEET is Detecting Errors Efficiently without

Testing.




Problem: Does the program do what is specified to
do?

Formal verification objective: Prove that it does,
using static analysis.

Testing (and runtime checking) objective: Find
errors, i.e., find mismatches between specified
infent and program behavior, through execution.




DEET is a static analysis approach, like formal
verification.

DEET is intended for error detection, like testing.

DEET has potential to serve as a cost-effective and
efficient prelude to both testing and verification.




- It can analyze one component at a time in a modular
fashion.

» It does not depend on code or even stub availability
for reused components; it can detect substitutability

bugs.

» It is automatic and does not require manual input
selection.

» It can pinpoint the origin of the error ina
component-based system.




Context of Alloy and ESC
- industrial languages, such as Java

+ objectives are incremental based on current
practice

* minimal expectations of programmers
+ Context of DEET

* research language, i.e., Resolve

» objectives are set in the context of software
practice as it could be

* a competent programmer hypothesis




N

i mplimen’rs

4& \
%pvleTne;’rs\ 4 T \

implements




- DEET is a step towards meeting the larger objective
of specification-based modular verification.

In Resolve, components have specifications, and
implementations are expected to have loop invariants,

representation invariants, abstraction relations.

Clean and rich semantics of Resolve allows variables
to be viewed as having values from arbitrary
mathematical spaces; references are not an issue.







Think of a List as a pair of mathematical strings:

* A string of entries that are to the /eft of the
"current position", and

» A string of entries to the right.

» Initially, both strings are empty.




View of a List of Trees with Abstraction

Left Right

Sl1= (« 4l' Z>>,< 2
S2= (« Kh > < >)



View After Insert (T, S2)

TR
£

wec O Ll o



Concept (type Entry);
uses String_Theory, ...

Type is modeled by (
Left: String(Entry);
Right: String(Entry)

exemplar S;

initialization ensures
S.Left = empty_string and
S.Right = empty_string;

end List_Template;




Concept (type Entry);
uses ...
Type is modeled by ...
Oper (E: Entry: S: List):
Oper (E: Entry:. S: List):
Oper (S: List);
Oper (S: List);
Oper (S: List);
Oper (S: List): Integer;
Oper (S: List): Integer;
Oper (S1, S2: List);
end List_Template;




Operation (clears E: Entry; updates S: List);
Ensures S.Left = #S.Left and
S.Right = <#E> o #S.Right;

Operation (replaces E: Entry; updates S: List);
Requires |S.Right| > O;
Ensures S.Left = #S.Left and
#S.Right = <E> o S.Right;







Operation (updates S: List);
Requires |S.Left| = O;
Ensures S.Left = #S.RightRev and
S.Right = empty_string;




Example Behavior of Reverse

AN



Procedure Reverse (updates S: List);
decreasing | S.Right]|;
Var E: Entry;

If Right_Length(S) > O then
Remove(E, S);
Reverse(S);

Insert(E, S);
end;
end Reverse;







What do we need to prove that the code is correct?
What can we assume?
What do we need to confirm?




Procedure Reverse (updates S: List);
decreasing | S.Right]|;
Var E: Entry;

If Right_Length(S) > O then
Remove(E, S);
Reverse(S);

Insert(E, S);
end;

end Reverse;




Path
Condition

If Right_Length(S) > O then

Remove(E, S);

Reverse(S);




» Conjoin assumptions and negation of what needs to
be confirmed.

Search for a counterexample.




» Restrict the "scopes" of participating variables, i.e.,
limit the mathematical values they can have.

* For variables of type Entry, suppose the scope is
restricted to be of size 1.

* Entry scope becomes: {Z0}

* For variables of type Str(Entry), suppose that the
length is restricted to be at most 1.

* The scope of String of Entries becomes:
{Str_Empty, Str_Z0}




Boolean formula that corresponds to P1 = PO:
((S1_Left_equals_Str_Empty A
SO_Left_equals_Str_Empty) v
(S1_Left_equals_Str_ZO0 a
SO_Left_equals_Str_Z0)) a

((S1_Right_equals_Str_Empty A
SO_Right_equals_Str_Empty) v
(S1_Right_equals_Str_Z0 A
SO_Right_equals_Str_Z0))




Set these to true
SO_Left_equals_Str_Empty
SO_Right_equals_Str_Z0

S5_Left_equals_Str_Empty
S5_Right_equals_Str_Z0

Set these to false
SO_Left_equals_Str_ZO
SO_Right_equals_Str_Empty




- We used Sinz/Kiichlin solver that can handle non-
CNF formulae easily.

- It took the solver a fraction of a second to find the
counterexample.

* We tried it on an example with 2000 statements and
6000 variables. It took the solver less than 2
seconds to find two counterexamples on a 1.2MHz
Athlon PC .




Our thesis: DEET can be an efficient and cost-
effective prelude to more exhaustive testing or
verification.

» Its scalability and utility for error detection needs

to be shown through practical experimentation.




