
This research is funded in part the U. S. National Science Foundation
 grant CCR-0113181.

DEET for Component-Based Software

Murali Sitaraman, Durga P. Gandi
Clemson University

Wolfgang Küchlin, Carsten Sinz
 Universität Tübingen

Bruce W. Weide
The Ohio State University

Correspondence: murali@cs.clemson.edu
http://www.cs.clemson.edu/~resolve

What is DEET?What is DEET?

• DEET is Best Bug Repellent – New England Journal of
Medicine, 2002.

• DEET is Detecting Errors Efficiently without
Testing.

Correctness Problem andCorrectness Problem and
Well-Known ApproachesWell-Known Approaches

• Problem: Does the program do what is specified to
do?

• Formal verification objective: Prove that it does,
using static analysis.

• Testing (and runtime checking) objective: Find
errors, i.e., find mismatches between specified
intent and program behavior, through execution.

DEET vs. Verification vs. TestingDEET vs. Verification vs. Testing

• DEET is a static analysis approach, like formal
verification.

• DEET is intended for error detection, like testing.

• DEET has potential to serve as a cost-effective and
efficient prelude to both testing and verification.

Benefits of the DEET ApproachBenefits of the DEET Approach

• It can analyze one component at a time in a modular
fashion.

• It does not depend on code or even stub availability
for reused components; it can detect substitutability
bugs.

• It is automatic and does not require manual input
selection.

• It can pinpoint the origin of the error in a
component-based system.

Contextual Differences Between DEET andContextual Differences Between DEET and
Other ApproachesOther Approaches

• Context of Alloy and ESC
• industrial languages, such as Java
• objectives are incremental based on current

practice
• minimal expectations of programmers

• Context of DEET
• research language, i.e., Resolve
• objectives are set in the context of software

practice as it could be
• a competent programmer hypothesis

Component-Based Software UsingComponent-Based Software Using
Design-By-Contract ParadigmDesign-By-Contract Paradigm

uses

implements

implements

uses

implements

uses

Ramifications of Contextual DifferencesRamifications of Contextual Differences

• DEET is a step towards meeting the larger objective
of specification-based modular verification.

• In Resolve, components have specifications, and
implementations are expected to have loop invariants,
representation invariants, abstraction relations.

• Clean and rich semantics of Resolve allows variables
to be viewed as having values from arbitrary
mathematical spaces; references are not an issue.

An ExampleAn Example

Abstraction in Specification

• Think of a List as a pair of mathematical strings:
• A string of entries that are to the left of the

"current position", and
• A string of entries to the right.

• Initially, both strings are empty.

View of a List of Trees with Abstraction

S1 = (< , > , < >)

S2 = (< > , < >)

Left Right

View After Insert (T, S2)

S2 = (< , > , < >)

T =

S2 = (< , > , < >),

Mathematical ModelingMathematical Modeling

Concept List_Template (type Entry);
uses String_Theory, …;

Type List is modeled by (
Left: String(Entry);
Right: String(Entry)

);
exemplar S;
initialization ensures
 S.Left = empty_string and
 S.Right = empty_string;

...
end List_Template;

List OperationsList Operations

Concept List_Template (type Entry);
uses …

Type List is modeled by …
Oper Insert(E: Entry; S: List);
Oper Remove(E: Entry; S: List);
Oper Advance(S: List);
Oper Reset(S: List);
Oper Advance_To_End(S: List);
Oper Left_Length(S: List): Integer;
Oper Right_Length(S: List): Integer;
Oper Swap_Rights(S1, S2: List);

end List_Template;

Design and Specification of OperationsDesign and Specification of Operations

Operation Insert(clears E: Entry; updates S: List);
Ensures S.Left = #S.Left and

S.Right = <#E> ° #S.Right;

Operation Remove(replaces E: Entry; updates S: List);
Requires |S.Right| > 0;
Ensures S.Left = #S.Left and

#S.Right = <E> ° S.Right;

Part II: ErroneousPart II: Erroneous
Code ExampleCode Example

A Specification of List ReverseA Specification of List Reverse

Operation Reverse(updates S: List);
Requires |S.Left| = 0;
Ensures S.Left = #S.RightRev and

S.Right = empty_string;

Example Behavior of Reverse

#S = (< > , <

,

>)

S = (< > , < >)

Left Right

,

An Erroneous ImplementationAn Erroneous Implementation

ProcedureProcedure Reverse (Reverse (updatesupdates S: List); S: List);
decreasingdecreasing |S.Right|; |S.Right|;

VarVar E: Entry; E: Entry;

IfIf Right_Length(S) > 0 Right_Length(S) > 0 thenthen
Remove(E, S);Remove(E, S);
Reverse(S);Reverse(S);
Insert(E, S);Insert(E, S);

endend;;
endend Reverse; Reverse;

DEET Steps for ErrorDEET Steps for Error
DetectionDetection

Step 1: Verification Condition GenerationStep 1: Verification Condition Generation

• What do we need to prove that the code is correct?
• What can we assume?
• What do we need to confirm?

Step 1: Verification Condition GenerationStep 1: Verification Condition Generation

ProcedureProcedure Reverse (Reverse (updatesupdates S: List); S: List);
decreasingdecreasing |S.Right|; |S.Right|;

VarVar E: Entry; E: Entry;
00 Assume:Assume: |S|S00.Left| = 0.Left| = 0;;

IfIf Right_Length(S) > 0 Right_Length(S) > 0 thenthen
Remove(E, S);Remove(E, S);
Reverse(S);Reverse(S);
Insert(E, S);Insert(E, S);

endend;;
55 Confirm: SConfirm: S55.Left = S.Left = S00.Right.RightRevRev andand

SS55.Right = .Right = empty_stringempty_string
endend Reverse; Reverse;

Step 1: Verification Condition GenerationStep 1: Verification Condition Generation

StateState Path Path AssumeAssume ConfirmConfirm
 Condition Condition

00 |S|S00.Left| = 0.Left| = 0
IfIf Right_Length(S) > 0 Right_Length(S) > 0 thenthen

11 |S|S00.Right| > 0.Right| > 0 SS1 1 == SS00 |S|S11.Right| > 0.Right| > 0
Remove(E, S);Remove(E, S);

22 |S|S00.Right| > 0.Right| > 0 SS22.Left.Left == SS1 1 .Left.Left andand
SS11.Right.Right = <E= <E22> > °° SS2 2 .Right.Right

|S|S00.Left| = 0 .Left| = 0 andand
|S|S22.Right| < |S.Right| < |S00.Right|.Right|

Reverse(S);Reverse(S);
33

Step 2: Error Hypothesis GenerationStep 2: Error Hypothesis Generation

• Conjoin assumptions and negation of what needs to
be confirmed.

• Search for a counterexample.

Step 3: Efficient Searching forStep 3: Efficient Searching for
Counterexamples by Restricting "Scope"Counterexamples by Restricting "Scope"

• Restrict the "scopes" of participating variables, i.e.,
limit the mathematical values they can have.

• For variables of type Entry, suppose the scope is
restricted to be of size 1.
• Entry scope becomes: {Z0}

• For variables of type Str(Entry), suppose that the
length is restricted to be at most 1.
• The scope of String of Entries becomes:

{Str_Empty, Str_Z0}

Step 3: Use Scope Restriction to GenerateStep 3: Use Scope Restriction to Generate
a Boolean Formula: Examplea Boolean Formula: Example

Boolean formula that corresponds to P1 = P0:Boolean formula that corresponds to P1 = P0:
((S1_Left_equals_Str_Empty ((S1_Left_equals_Str_Empty ∧∧
S0_Left_equals_Str_Empty) S0_Left_equals_Str_Empty) ∨∨
((S1_Left_equals_Str_Z0 S1_Left_equals_Str_Z0 ∧∧
S0_Left_equals_Str_Z0)) S0_Left_equals_Str_Z0)) ∧∧

((S1_Right_equals_Str_Empty ((S1_Right_equals_Str_Empty ∧∧
S0_Right_equals_Str_Empty) S0_Right_equals_Str_Empty) ∨∨
(S1_Right_equals_Str_Z0 (S1_Right_equals_Str_Z0 ∧∧
S0_Right_equals_Str_Z0))S0_Right_equals_Str_Z0))

Step 4: Employ a SAT Solver to SearchStep 4: Employ a SAT Solver to Search
for a Solutionfor a Solution

Set these to trueSet these to true
 S0_Left_equals_Str_EmptyS0_Left_equals_Str_Empty

S0_Right_equals_Str_Z0S0_Right_equals_Str_Z0
……
S5_Left_equals_Str_EmptyS5_Left_equals_Str_Empty
S5_Right_equals_Str_Z0S5_Right_equals_Str_Z0

Set these to falseSet these to false
 S0_Left_equals_Str_Z0S0_Left_equals_Str_Z0

S0_Right_equals_Str_EmptyS0_Right_equals_Str_Empty
……

Efficiency of DEETEfficiency of DEET

• We used Sinz/Küchlin solver that can handle non-
CNF formulae easily.

• It took the solver a fraction of a second to find the
counterexample.

• We tried it on an example with 2000 statements and
6000 variables. It took the solver less than 2
seconds to find two counterexamples on a 1.2MHz
Athlon PC .

Status and Future Directions

• Our thesis: DEET can be an efficient and cost-
effective prelude to more exhaustive testing or
verification.

• Its scalability and utility for error detection needs
to be shown through practical experimentation.

