
Proving Consistency Assertions for

Automotive Product Data Management

Wolfgang K�uchlin and Carsten Sinz
Symbolic Computation Group, WSI for Computer Science, University of T�ubingen

and Steinbeis Technology Transfer Center OIT,

Sand 13, D-72076 T�ubingen, Germany

http://www-sr.informatik.uni-tuebingen.de

Abstract. We present a formal speci�cation and veri�cation approach for industrial

product data bases containing boolean logic formulae to express constraints. Within

this framework, global consistency assertions about the product data are converted

into propositional satis�ability problems. Today's state-of-the-art provers turn out

to be surprisingly e�cient in solving the SAT-instances generated by this process.

Moreover, we introduce a method for encoding special non-monotonic constructs

in traditional boolean logic. We have successfully applied our method to industrial

automotive product data management and could establish a set of commercially

used interactive tools that facilitate the management of change and help raise quality

standards.

Keywords: formal speci�cation, veri�cation, product data management, product

con�guration, industrial application

1. Introduction

The use of formal methods is still uncommon in industrial practice [17].

Analysis of safety-critical systems and veri�cation of both processors

and protocols seem to be among the rare exceptions [10, 13, 15, 19].

The reason for this is manifold: First, there are intrinsic preconditions

imposed on the process to be formalized. One is the requirement of

precise, symbolic input data; this contrasts with the imprecise data

delivered by physical measurement. Another is the algorithmic com-

plexity of symbolic techniques which is usually much higher than that

of numerical or heuristic procedures. Second, the industrial process to

be formalized has to be understood very precisely in every aspect, and

modeling has to start on a well-founded basis. The language in which

the process is to be described must have su�cient expressive power, but

should exclude intractable logics|incomplete, undecidable, or merely

too time- or space-consuming for the intended purpose.

Besides these intrinsic reasons there are more practical ones: On the

one hand, one is faced with industrial prejudice against the power of

formal veri�cation [4]; on the other hand, research in the ATP commu-

nity is often not directly concerned with real-world application aspects.

c
 1999 Kluwer Academic Publishers. Printed in the Netherlands.

sat2000.tex; 28/08/1999; 20:34; p.1

2

Further obstacles arise when communication between researchers and

practitioners is hindered by di�erent worlds of thought, or when in-

corporation of formal methods requires major changes in the actual

production process. However, successful veri�cation projects conducted

in the realm of industry may further the acceptance of formal methods

[3, 12].

In this article we describe a method to reveal inconsistencies in a

data base used by DaimlerChrysler AG to check the constructibility of

motor-vehicles of the Mercedes-Benz lines. This project was greatly

helped by the fact that boolean logic was already used to express

constraints in the product data base. Di�culties were imposed by the

mere complexity, as the data that had to be considered for some tests

consisted of more than 18,000 rules (elementary boolean formulae) and

1,700 propositional variables. In addition we had to formalize signi�cant

portions of the industrial process involved in order to prove assertions

that could not be checked so far.

Although the general problem of product con�guration has gained

interest over the last years, we have not yet seen the formalization and

veri�cation of an existing large-scale industrial system.

The paper is organized as follows: At �rst, we brie
y describe the

automobile constructibility data base, its integration into the order

processing and production process, and show some potential inconsis-

tencies that might occur in the data base. Then a formalization of the

process to check individual car orders is presented, followed by a variety

of global data base consistency criteria formulated as propositional sat-

is�ability problems. Finally, we present experimental results achieved

using a state-of-the-art propositional satis�ability checker.

2. Product Documentation and Order Processing

The Mercedes-Benz passenger car and commercial vehicle production

encompasses a wide variety of di�erent models customers can order.

Apart from di�erent model classes, design lines and engine variants, an

extraordinary number of supplementary equipment may be selected.

Not all theoretically possible combinations of variants can actually be

produced, however. Geometrical, electrical or other engineering limita-

tions are as common as legal or sales restrictions. Moreover, the avail-

ability of certain models can di�er from country to country and undergo

substantial temporal change. To automate administration and produc-

tion tasks, exact knowledge about valid models is needed in electronic

form. Thus, a data base (called product documentation) is employed

sat2000.tex; 28/08/1999; 20:34; p.2

3

to draw the distinction between models that can be manufactured and

those that cannot.

A second, but equally important purpose of the product documen-

tation is to transform a customer's model description into a parts list

for the requested vehicle, which can then be fed into the production

planning process.

2.1. Processing a Customer's Order

A customer's order consists of a basic model class selection together

with a set of further equipment codes describing additional features.

As model classes can be decoded into a few special equipment codes,

all rules in the product documentation are formulated on the basis of

these codes, which are just propositional variables.

Ascertaining the constructibility of an individual order as well as

parts list generation and other intermediate steps are performed by

evaluating boolean formulae stored in the product documentation data

base.

Within our application constructibility may only be checked with

respect to the rules of the product documentation, not with respect to

physical reality. Therefore, we call an order constructible (or valid) if

the corresponding vehicle model can be manufactured according to the

product documentation; otherwise an order is called invalid.

The most important of the aforementioned intermediate steps|and

the only one considered here|allows the completion of orders by ap-

pending additional codes. This supplementing process is mainly used

to add codes that are implied by technical dependencies or that make

up equipment packages.

The whole order processing procedure (slightly simpli�ed) consists

of the following steps:

1. Order completion: Extend the customer's order by additional codes.

2. Constructibility check: Are all constraints on constructible models

ful�lled by this order?

3. Parts list generation: Transform the (possibly supplemented) order

into a parts list.

These three steps are illustrated in Figure 1, schematically on the

left hand side and by a concrete example on the right.

sat2000.tex; 28/08/1999; 20:34; p.3

4

(order completion)

F202, FW, M111, M22, L, 229L, 744U, 401A, 955,

584, 305,...

F202, FW, M111, M22, L, 229L, 744U, 401A, 955,

584, 305,...

06 33005 20278A, 06 92004 20228A,...

06PB202000206, 06PB101812520, 06 80048 20801A,

customer’s order

constructibility

constructible

customer’s order

parts list generation

order’s parts list

constructible

F202, FW, M111, M22, L, 229L, 744U, 401A, 955

adding 584, 305,...

conversion codes – parts

not
constructible

checked, possibly extended

supplementing process

06 80015 20284A, 06PB202805014, 06 47094 20806A,

check

Figure 1. Processing customers' orders

2.2. Consistency of the Product Documentation

The mere complexity of the product documentation sometimes induces

erroneous data base entries which are usually hard to �nd. Global usage

and varying knowledge of the operating personnel aggravate this trend.

In one of the evaluated settings, consisting of that part of the product

documentation which speci�es the limousines of the Mercedes-Benz C-

class, 1,151 codes and formulae containing a total of more than 170,000

logical symbols had to be considered.

The formal speci�cation of the complete process enables posterior

veri�cation of important aspects and thus o�ers new possibilities to

reduce inconsistencies.

A priori, i.e. without explicit knowledge of intended constraints on

constructible models, the following data base consistency criteria may

be checked:

Necessary codes: Are there codes which must appear in each con-

structible order?

Inadmissible codes: Are there any codes which cannot possibly ap-

pear in any constructible order?

sat2000.tex; 28/08/1999; 20:34; p.4

5

Consistency of the order completion process: Are there any con-

structible orders which are invalidated by the supplementing pro-

cess? Does the outcome of the supplementing process depend on

the (probably accidental) ordering in which codes are added?

Super
uous parts: Are there any parts which cannot occur in any

constructible order?

Ambiguities in the parts list: Are there any orders for which mu-

tually exclusive parts are simultaneously selected?

By using additional information further checks may be performed.

Most of them require only minor changes with respect to the above

criteria. The existence of valid orders with certain constraints falls

under this class of checks. They are an easy generalization of the search

for necessary or inadmissible codes.

We see our main contribution in showing how to formalize these con-

sistency checks and how to apply theorem proving methods to improve

the data quality within an existing industrial process.

3. A Formal View of Product Documentation

We will now describe the data base and its functionality more thor-

oughly. Starting with constructibility, and continuing with the order

completion process, we are �nally led to parts list generation.

Thus, we achieve a formal description of the complete actual order

processing procedure for Mercedes-Benz cars and trucks. This formal-

ization will afterwards serve as the basis on which product documen-

tation consistency criteria can be formulated.

3.1. Preliminaries

Let C be the set of all equipment codes used in the product documen-

tation. Then a customer's order O is the subset of C corresponding to

the equipment selected in the order. Obviously each order O may be

interpreted as a truth assignment by using the characteristic function

�O : C ! f0; 1g of O relative to C, where we interpret 1 as truth and 0

as falsity.

All checks and modi�cations performed on a customer's order O
depend on the evaluation of formulae (rules of the product documenta-

tion) under the truth assignment �O. For a formula F this evaluation

is denoted by ��O(F). We will also use the notation �O j= F , or even
shorter O j= F , instead of ��O(F) = 1.

sat2000.tex; 28/08/1999; 20:34; p.5

6

Furthermore, we assume that each order contains a speci�cation

(exactly one of the codes L and R) of whether left or right hand side

steering is demanded.

3.2. Constructibility

In general, constructibility1 of a customer's order O is checked accord-

ing to the following scheme: For each code, there may be several rules

indicating restrictions under which this code may be used. A code is

called constructible within O if all constraining rules associated with

this code are ful�lled, i.e. all of these rules evaluate to true under

�O. For an order to be constructible, each code of the order must be

constructible.

The constructibility check consists of two independent parts: The

�rst one is independent of the car model class considered, while the

second one takes into account additional features of each car model

class. The latter also depends on the kind of steering2 (left or right

hand side) under consideration.

The model class independent part of the constructibility check con-

sists of a rule for each code indicating a constraint under which it may

(or may not) be used. For a code c we use the notation CI(c) for the
model class independent rule corresponding to c. To pass the model

class independent constructibility check, an order O must ful�ll the

following condition:

O j= C
I(c) for each c 2 O : (1)

The second part of the constructibility check is more complex, and

the relevant rules are hierarchically organized, as shown in Figure 2.

There is a set P of geometric positions and a set V of variants.

Positions are grouped re
ecting common functionality or usage. With

each position p 2 P a unique code c is associated; however, the converse
need not hold: hence, a code may occur at di�erent positions. We use

the function Pos : C ! 2P to denote all positions associated with a

code. Positions are unique within the whole product documentation,

and for each position a (possibly empty) set of variants V � V exists.

Each variant possesses an additional steering attribute (left or right,

L or R). The function Var : P � fL;Rg ! 2V selects all variants at

a position with matching steering type. The model class dependent

constructibility rules3 CD(p; v) are indexed by a pair (p; v) 2 P � V.

1 German: Baubarkeit
2 German: Lenkungsvariante
3 German: Baubarkeitsregeln

sat2000.tex; 28/08/1999; 20:34; p.6

7

R1 R2 R3

0001 0002 0003

constructibility rules

variants

positions code:988 code:704 code:494

A-704A-988

steering: L steering: L

B-1020

steering: R

Figure 2. Structure of model class dependent constructibility

For a code c to be constructible, at least one variant v of matching

steering type must exist for every position p associated with c, such
that CD(p; v) is ful�lled. In a valid order O every code c 2 O must be

constructible.

Thus we obtain the following condition for an order O of steering

type s to pass the model class dependent constructibility check:

O j= B(c; s) for each c 2 O; (2)

where B(c; s) is de�ned as

B(c; s) =
^

p2Pos(c)

_
v2Var(p;s)

C
D(p; v) : (3)

The cardinalities of Pos(c) and Var(p; s) are usually less than a

dozen, the individual rules CD(p; v) normally consist of much fewer

than a hundred symbols.

For an order to be valid, it must pass both the model dependent

and the independent check.

3.3. Order Completion Process

The order completion process adds implied codes to an order. The

process is guided by special formulae, called supplementing rules4, as-

sociated with each code. These rules are structurally organized in the

same way as those of the model dependent constructibility check, i.e.

in positions and variants. Each rule application extends the order by

4 German: Zusteuerungsregeln

sat2000.tex; 28/08/1999; 20:34; p.7

8

exactly one code, so the whole completion process is iterated until no

further changes result.

Ideally, the relationship between original and augmented order should

be functional. However, the result of the order completion process may

depend critically on the order of rule application, whereas the exact

sequence in which individual codes are added is sometimes obscure.

Therefore, the functional relationship cannot be assumed to hold in

general. We will show below how to identify potential instances of this

problem.

As is the case with the model class dependent constructibility check,

supplementing rules S(p; v) are hierarchically organized in positions

p 2 P and variants v 2 V.5 The semantics of positions is di�erent,

though. In order to activate a supplementing step for code c, it is su�-

cient that any rule for code c is ful�lled, independent of the position or

variant of the rule. To avoid invalidation of correct orders, constructibil-

ity is also considered during such a step. This works as follows: Besides

the supplementing rule S(p; v) for code c, the corresponding formulae

CD(p; v) and CI(c) must evaluate to true under order O.
Thus, code c is added to order O of steering type s, if

O j= Z(c; s); (4)

where Z(c; s) is de�ned as

Z(c; s) =

� _
p2Pos(c)
v2Var(p;s)

�
S(p; v) ^ C

D(p; v)
��
^ C

I(c) : (5)

Symbolically, we can express the admissible steps of the supplement-

ing process as a rewrite relation �!
S
� 2C � 2C. Thus O �!

S
O0 i�

there is a code c such that O j= Z(c; s), where s is the unique steering
code occurring in O, c =2 O and O0 = O _[fcg. We also use the notation

O c�!
S
O0 if O0 is obtained by adding code c to order O. Hence we

have

�!
S

=
[
c2C

c
�!

S
:

Note that relation �!
S
is a terminating reduction-relation. The

re
exive-transitive closure of �!
S
is denoted by �!�

S
, and the n-fold

product of�!
S
by�!n

S
. Furthermore, we write�!�n

S
for
S
0�i�n �!

i
S
.

De�nitions of basic notions regarding rewrite systems can be found in

[8].

5
C
D(p; v) corresponds to S(p; v)

sat2000.tex; 28/08/1999; 20:34; p.8

9

3.4. Parts List Generation

The parts list6 is subdivided into modules, positions and variants, with

decreasing generality from modules to variants. Parts are grouped in

modules depending on functional and geometrical aspects. Each posi-

tion contains all those parts which may be used alternatively in one

place. The mutually exclusive parts of a position are speci�ed using

variants. Admissible variants depend, as is the case with model class

dependent constructibility, on the steering type under consideration.

Each variant is assigned a formula called a code rule7, and a part

number. The structure of the parts list is depicted in Figure 3.

1 2 3

modules

positions

variants

501206

20 60

code rules / parts R1 R2 R3

100

part: 12496 part: 96541part: 40567

402968 200408

steering: Lsteering: L steering: R

Figure 3. Structure of the parts list

The sets of part numbers, modules, positions, and variants of the

parts list are denoted by N ,M, I, andW, respectively. All variants of

module m 2 M at position p 2 I with steering type s are delivered by

function PV :M�I�fL;Rg ! 2W , the steering type of a variant v of
module m and position p is determined by �(m; p; v). The code rule of
variant v at position p in modulem is accessible through R(m; p; v), the
corresponding part is �(m; p; v). The mapping � : (m; p; v) 7! �(m; p; v)
need not be injective: for each position there is a part, but a part may be

used at many positions. Moreover, let the function
 : N ! 2M�I�W

select all occurrences of a certain part in the parts list.

6 German: Teileliste, St�uckliste
7 German: Coderegel

sat2000.tex; 28/08/1999; 20:34; p.9

10

Variant v at position p of module m is selected for an order O of

steering type s, if

�(m; p; v) = s and O j= R(m; p; v) : (6)

In order to construct the parts list for a completed and checked

customer's order O, one thus scans through all modules, positions, and

variants, and selects those parts which possess a matching steering

attribute and a code rule that evaluates to true under O.
Usually, exactly one variant has to be selected for each module

position.

Let us end this section with two notes:

1. The product data base as described above is in use for the Mercedes-

Benz passenger cars only. Commercial vehicles are documented in

a slightly di�erent fashion.

2. In the actual process some minor re�nements and exceptional cases

occur which we did not consider here.

4. Formalization of Consistency Assertions

In this section we want to develop criteria expressing various consis-

tency aspects of the product documentation data base as a whole. These

aspects were already brie
y mentioned in Section 2.2.

Most of these consistency assertions require a characterization of

the set of orders having passed the order completion process and the

constructibility check, just before parts list generation.

Starting with a formula representing all constructible models, and

extending it by a partial formula concerning the supplementing process,

we �nally reach the required characterization. Having this formula at

hand, we can formulate the aforementioned consistency assertions as

propositional satis�ability problems.

Throughout this section we assume the set of boolean variables to

be �xed to C. The set of propositional formulae over C is denoted by

F(C) or simply F . Formula variables are implicitly assumed to range

over F , sets of orders are subsets of 2C.
Furthermore, we assume ^;_;: and ? as basic logical constants,

whose semantics are de�ned, as usual, by

��O(F ^G) = min(��O(F); �
�

O(G))

��O(F _G) = max(��O(F); �
�

O(G))

��O(:F) = 1� ��O(F)

��O(?) = 0

sat2000.tex; 28/08/1999; 20:34; p.10

11

Other symbols (), >) and their semantics are derived from the logical

constants as usual.

Moreover, we restrict our attention to only one model class. This is

no limitation in practice, because model classes are mutually indepen-

dent.

DEFINITION 4.1. A propositional formula F describes a set S of

orders if S is the set of models of F (i.e. O j= F i� O 2 S).

PROPOSITION 4.2. The set of model class independent constructible

orders is described by formula BI, where

BI :=
^
c2C

(c) C
I(c)) : (7)

Proof. Let S be the set of model class independent constructible

orders. By (1) we know that O 2 S i� O j= CI(c) for each c 2 O. So
we have to show that

O j= BI i� O j= C
I(c) for each c 2 O : (�)

At �rst, note that evaluation of BI under any �O yields

��O(B
I) = min

c2C
fmax(1� �O(c); �

�

O(C
I(c)))g :

We now prove both implications of (�).

\)": Let O j= BI and c0 2 O arbitrary. Then ��O(B
I) = 1 and, in

particular, max(1 � �O(c
0); ��O(C

I(c0))) = 1. As c0 2 O implies

�O(c
0) = 1; we have ��O(C

I(c0)) = 1 and thus O j= CI(c0).

\(": Let O � C with O j= CI(c) for each c 2 O. Choose any c0 2 C.
If c0 62 O then �O(c

0) = 0. Otherwise we have ��O(C
I(c0)) = 1. In

both cases max(1��O(c
0); ��O(C

I(c))) = 1 holds. As c0 was chosen
arbitrarily we have ��O(B

I) = 1.

PROPOSITION 4.3. The set of model class dependent constructible

orders is described by formula BD, where

BD :=
^
c2C

0
BB@c) ^

p2Pos(c)
s2fL;Rg

0
@s) _

v2Var(p;s)

C
D(p; v)

1
A
1
CCA (8)

=
^
c2C

s2fL;Rg

�
c ^ s) B(c; s)

�
; (9)

and B(c; s) is de�ned by equation (3).

sat2000.tex; 28/08/1999; 20:34; p.11

12

Proof. The equivalence of (8) and (9) is easily shown. The rest of

the proof is similar to that of Proposition 4.2. Let sO be the uniquely

determined steering type of order O. Using de�nition (2) we have to

show that

O j= BD i� O j= B(c; sO) for each c 2 O : (��)

Formula (9) yields for arbitrary O

��O(B
D) = min

c2C;s2fL;Rg
fmax(1� �O(c); 1� �O(s); �

�

O(B(c; s)))g :

We again show the two implications of (��) independently:

\)": Let O j= BD and c0 2 O arbitrary. Furthermore, let sO be

the uniquely determined steering type of O. Then ��O(B
D) = 1

and max(1 � �O(c
0); 1 � �O(sO); �

�

O(B(c
0; sO))) = 1. As �O(c

0) =

�O(sO) = 1 we have ��O(B(c
0; sO))) = 1 and thus O j= B(c0; sO).

\(": Let O � C with O j= B(c; sO) for each c 2 O and uniquely

determined sO 2 O \ fL;Rg. Choose any c0 2 C; s0 2 fL;Rg.
For s0 6= sO we obtain �O(s

0) = 0. If c0 62 O then �O(c
0) = 0.

Otherwise (s0 = sO; c
0 2 O) we have ��O(B(c

0; s0)) = 1. In each case

max(1� �O(c
0); 1� �O(s

0); ��O(B(c
0; s0)))g = 1 holds. As c0 and s0

were chosen arbitrarily we have ��O(B
D) = 1.

Formula BD allows orders with either no or multiple steering codes.

To enforce exactly one s 2 fL;Rg in each order, we use the following

formula:

PROPOSITION 4.4. The set of all orders containing exactly one steer-

ing code s 2 fL;Rg is described by formula BS, where

BS := (L _R) ^ :(L ^R) : (10)

Proof. By case distinction whether or not L;R 2 O.

COROLLARY 4.5. The set of (e�ectively) constructible orders is de-

scribed by formula BC, where

BC := BI ^ BD ^ BS : (11)

Proof. By Propositions 4.2, 4.3 and 4.4, and the fact that ^ corre-

sponds to set intersection.

What we have achieved so far is the formalization of the constructibil-

ity check; the order completion process, however, is not yet integrated.

At �rst glance, it may seem that the supplementing process requires

sat2000.tex; 28/08/1999; 20:34; p.12

13

modeling some kind of state transition. Describing each step in this

way inevitably necessitates the use of non-monotonic or modal logic.

Neither way seems to be desirable due to complexity considerations.

4.1. Avoiding State Transitions

The major part of the criteria to be checked requires no knowledge of

the dynamic development caused by the supplementing process. This

holds, e.g., for the (static) description of all possible states appearing

after completion of the supplementing process. Moreover, formalization

of changes caused by a �xed number of supplementing steps is also

possible within propositional logic, as is shown later.

Before resuming with further criteria, we want to comment on some

simple properties of relation �!
S
.

At �rst, note that an order is left unchanged by the supplementing

process i� it is in �!
S
-normal form. Furthermore, an �!

S
-normal

form of an order O of steering type s is characterized by the following

property (compare with equation (4)):

O 6j= Z(c; s) for all c 2 C nO : (12)

We therefore obtain

PROPOSITION 4.6. The set of orders left unchanged by the supple-

menting process is described by formula ZU
, where

ZU :=
^
c2C

s2fL;Rg

0
BB@s ^

� _
p2Pos(c)
v2Var(p;s)

�
S(p; v) ^ C

D(p; v)
��
^ C

I(c)) c

1
CCA(13)

=
^
c2C

s2fL;Rg

�
s ^ Z(c; s)) c

�
; (14)

and Z(c; s) is de�ned by equation (5).

Proof. Formula (13) is just the version of (14) with the de�nition of

Z(c; s) expanded, so equivalence is obvious. Furthermore, let sO be the

unique steering type of order O. Using (12) we now have to show that

O j= ZU i� O 6j= Z(c; sO) for all c 2 C nO : (���)

Evaluation yields for arbitrary O

��O(Z
U) = min

c2C;s2fL;Rg
fmax(1� �O(s); 1� ��O(Z(c; s)); �O(c))g :

sat2000.tex; 28/08/1999; 20:34; p.13

14

As in similar proofs before, equivalence (���) is shown by proving the

two implications directly, which we feel free to omit here.

We are now able to describe the set of orders that appear just before

parts list generation:

COROLLARY 4.7. The set of orders which have passed the supple-

menting process and the constructibility check are described by formula

BZ, where

BZ := BC ^ ZU : (15)

Proof. Corollary 4.5, Proposition 4.6.

Four of the �ve initially posed problems can now be solved:

Necessary codes: Code c is necessary i� the formula

BZ) c

is a tautology, which is equivalent to BZ ^ :c being unsatis�able.

Inadmissible codes: Code c is inadmissible i� the formula

c) :BZ

is a tautology. This holds i� BZ ^ c is not satis�able.

Super
uous parts: Part t is super
uous i�

BZ ^
_

(m;p;v)2
(t)

�
�(m; p; v) ^R(m; p; v)

�

is unsatis�able.

Ambiguities in the parts list generation process: There is an am-

biguity between variants v1 and v2 at position p of module m i�

the formula

BZ ^ �(m; p; v1) ^R(m; p; v1) ^ �(m; p; v2) ^R(m; p; v2)

is satis�able.

The interpretation of these formulae is straightforward using the

set-of-orders view suggested by De�nition 4.1.

Note that BZ occurs exclusively positive in all these cases, when

formulated as satis�ability problems. We can greatly pro�t from this

fact as follows. Most propositional provers require the input to be in

sat2000.tex; 28/08/1999; 20:34; p.14

15

conjunctive normal form. As BZ is a conjunction of smaller formulae, it

can be converted relatively easily to conjunctive normal form (CNF),

at least much more easily than its negation N = :BZ. The CNF of

N , which is structurally equivalent to the disjunctive normal form of

BZ, can be understood as an implicit enumeration of all valid orders.

It seems hardly surprising that the enumeration-of-orders view is less

e�cient than the constraint view using BZ.
We now concentrate on the remaining open question concerning the

consistency of the supplementing process.

4.2. Ordering Dependencies in the Supplementing Process

At �rst, we investigate dependencies on the ordering in which the sup-

plementing steps are performed. As the relation �!
S
is terminating,

it su�ces to show that �!
S
is locally con
uent to assure (global)

con
uence and thus ordering independence.

LEMMA 4.8. If �!
S
is locally con
uent, every order O has a unique

�!
S
-normal form.

Proof. This is just a variation of Newman's Diamond Lemma [14]

applied to the terminating reduction relation �!
S
.

As we want to avoid the encoding of di�erent states during the

supplementing process in a modal or non-monotonic logic, we have

to resort to constructs available in propositional logic. But a purely

propositional formalization of the local con
uence property of relation

�!
S
is hard to give, as the number of supplementing steps and thus

supplementing possibilities can be quite large.

Therefore, we consider a stronger precondition by limiting the num-

ber of reduction steps:

DEFINITION 4.9. The relation �!
S
is n-step locally con
uent if for

all O;O1; O2 � C there is an O12 � C with

O1 �S O �!S
O2) O1 �!

�n
S

O12 �
�n
S

O2 :

NOTE 4.10. Obviously n-step local con
uence implies local con
uence.

Let us now concentrate on developing a criterion describing 1-step

local con
uence. Before we can give this criterion, we need the following

DEFINITION 4.11. Let F 2 F(C), x; y 2 C and k 2 f>;?g.8 The

restriction F jx=k is de�ned as the homomorphic extension of

yjx=k =

�
k if y = x
y otherwise

8 > denotes truth, ? falsity.

sat2000.tex; 28/08/1999; 20:34; p.15

16

to the set F(C) of formulae.

Using this de�nition we can formalize properties about successor

states in the supplementing process.

LEMMA 4.12. Let O c�!
S
O0 and F 2 F . Then

O j= F jc=> i� O0 j= F :
Proof. At �rst, note that O0 = O _[fcg. We proceed by structural

induction. The lemma is obvious for F = > and F = ?. If F = x 6= c
is a propositional variable, then xjc=> = x and �O(x) = �O0(x). If
F = c, we have cjc=> = > and �O0(c) = 1 = �O(>). Now, assume

F = :G. Since (:G)jc=> � :(Gjc=>), the induction hypothesis already
proves the lemma. The cases F = G _H and F = G ^H are handled

accordingly using the fact that the restriction is a homomorphism.

Using Lemma 4.12 we can represent the e�ect of individual sup-

plementing steps in propositional logic. The validity of a property F
after adding code c is thus expressed by the validity of F jc=> before

supplementing c.
We therefore obtain

PROPOSITION 4.13. The supplementing process (i.e. �!
S
) is 1-step

locally con
uent i�

^
c1;c22C
c1 6=c2

:c1 ^ :c2)

^
s2fL;Rg

�
s)

�
Z(c1; s) ^ Z(c2; s)) Z(c2; s)jc1=> ^ Z(c1; s)jc2=>

��!
(16)

is a tautology.

Proof. First we want to show that 1-step local con
uence implies

(16). We assume, for a contradiction, that (16) is not a tautology. Then

there is a counterexample model O of steering type sO, and codes c1; c2
with c1 6= c2, such that c1; c2 62 O, O j= Z(c1; sO), O j= Z(c2; sO) and

O 6j= Z(c2; sO)jc1=>^Z(c1; sO)jc2=>. Therefore, we also haveO
c1�!

S
O1

and O
c2�!

S
O2 for appropriate O1 and O2. Moreover we get by using

Lemma 4.12: O1 6
c2�!

S
O12 or O2 6

c1�!
S
O12. As O1; O2 6= O12 we have

shown that �!
S
is not 1-step locally con
uent, a contradiction. The

converse, namely that (16) implies 1-step local con
uence is shown

using a similar argumentation in reverse order.

sat2000.tex; 28/08/1999; 20:34; p.16

17

Combining Lemma 4.8 and Note 4.10 with Proposition 4.13 we

have a criterion at hand that captures the largest part of ordering

dependencies occurring in our application.9

COROLLARY 4.14. Assume (16) holds. Then the relation �!
S
gen-

erates unique normal forms.

4.3. Consistency of the Supplementing Process

The supplementing process adds codes to orders, thereby possibly con-

verting non-constructible to constructible ones. The opposite, however,

namely the conversion of constructible to non-constructible orders, may

indicate a
aw in the process, especially since the supplementing for-

mula (5) takes constructibility information (CD;CI) into consideration.

We now want to elaborate on this.

Supplementing code c 2 C while retaining constructibility is ex-

pressed by the validity of0
@BC ^ :c ^ ^

s2fL;Rg

�
s) Z(c; s)

�1A) BCjc=> (17)

The subformula BCjc=> can be further simpli�ed in this context by

omitting certain subformulae as follows. For arbitrary formulae F we

have F) F jc=> as long as c does not occur negatively in F (this is

easily proved by induction on F). As BC is a big conjunctionB1^� � �^Bn

we can drop those subformulae Bi not containing c negatively from the

restriction BCjc=> = (B1^� � �^Bn)jc=>, without changing the validity
of (17).

PROPOSITION 4.15. The supplementing process preserves constructibil-

ity (in the abovementioned sense) i�

^
c2C

 �
BC ^ :c ^

^
s2fL;Rg

�
s) Z(c; s)

��
) BCjc=>

!
(18)

is a tautology.

Proof. Following the same idea as in the proof of Lemma 4.13.

9 Multiple supplementing steps can be simulated accordingly, although at the

cost of increased complexity.

sat2000.tex; 28/08/1999; 20:34; p.17

18

5. Experimental Results

In order to solve the decision problems developed in the last section, we

made experiments with di�erent proving techniques, including resolu-

tion [16], term rewriting (using Stone polynomials to represent formulae

[11]), BDDs [1, 5], and variations of the Davis-Putnam (DP) algorithm

[7, 6]. Some of these techniques (e.g. BDDs) did not even permit a

representation of the generated formulae (like BZ). In general, run-times

and memory requirements di�ered by orders of magnitude between

these procedures. The DP algorithm turned out to be by far best-

suited to solve the generated problems. This corroborates conclusions

from [22].

Results of the experiments with a state-of-the-art implementation

of the DP algorithm (SATO [20, 21]) are shown in Table I.

We used the test set

T =
�
BZ ^ c

�� c 2 C	 [�BZ ^ :c �� c 2 C	
(representing the computation of necessary and inadmissible codes) as

input for the propositional prover and split T into two disjoint subsets

SAT and UNSAT containing satis�able and unsatis�able instances,

respectively.

Table I. SATO average and maximal run-times for con-

sistency proofs, in seconds.

data set #vars #clauses �tSAT �tUNSAT tmax

C-Class 1151 22036 0.49 0.38 0.68

Actros 1734 14264 0.19 0.13 0.21

Atego 1684 8973 0.12 0.09 0.15

The input data comprise the complete product documentation of

the limousines of the Mercedes-Benz C-class, and parts of the product

documentation of the Mercedes-Benz heavy and light trucks Actros and

Atego, respectively (each restricted to one model line). To give an idea

of the problem sizes, we have also included the number of propositional

variables and the number of clauses in Table I.

Average run times for the elements of the two test sets SAT and

UNSAT as well as the maximal run times are reported in seconds. All

tests were performed on a SUN Ultra 1 running at 140 MHz under

Solaris 2.5.1. Experiments using encodings of other consistency criteria

resulted in similar prover run-times.

sat2000.tex; 28/08/1999; 20:34; p.18

19

Most Davis-Putnam-style implementations require the input data

to be in conjunctive normal form. We experimented with di�erent

transformation procedures including BDD-based techniques (as they

are used e.g. for two-level hardware minimization) and the traditional

satis�ability-conserving transformation method due to Tseitin [18]. Nei-

ther method showed clear advantages, be it in conversion times or in

the impact on prover behaviour. We nevertheless believe that the rela-

tionship between CNF transformation technique and proof complexity

could be an interesting �eld of research.

The statistical information about the data sets shown in Table I

refers to a BDD-based CNF transformation (which results in fewer

variables, but more and longer clauses).

Further experiments with the DP algorithm using di�erent data

structures (lists vs. tries), di�erent variable selection heuristics, and

di�erent types of search-space pruning, indicated that most improve-

ments on the DP algorithm (e.g. backjumping [2] or sophisticated literal

selection heuristics [9]) were vital to achieve reasonable run-times for

the complete set of generated SAT-instances.

6. Conclusions

In this paper we developed the formalization of an existing industrial

process in automotive product data management. The formalization

allows us to automatically check consistency criteria that could not

be handled so far. We were thus able to increase the quality of the

product documentation. Moreover, by establishing interactive tools for

product data management, we could provide a push-button technology

that helps the professionals cope with the continuous change of data.

Of course, practical acceptance of such tools crucially depends on

reasonable run times, even more when used interactively. The state of

development of current satis�ability checkers proved to be su�ciently

advanced for our project. But what seems to have been even more

important is the fact that the integration of a prover into an information

system (with GUI and connecting interface to the product documenta-

tion data base) can be completely hidden from the user. So only little

additional knowledge is demanded from the operating personnel after

incorporation of the information system into the existing work
ow.

As the product documentation's constraints and rules were already

presented in boolean logic, we could restrict our work to formalizing the

process-inherent logic. A further encoding of the data was not neces-

sary in order to apply propositional provers. We assume that encoding

of other data representations (e.g. �nite domains) would have been

sat2000.tex; 28/08/1999; 20:34; p.19

20

straightforward. Thus, propositional logic input data seems not to be

a necessary precondition for our approach. The critical issue is, how

precise the industrial data and processes are laid down initially.

Although the experiments were tailored to automotive product doc-

umentation, the underlying concepts should be applicable to neighbor-

ing �elds of product data management (aviation, avionics, electronics,

etc.), and especially to automotive supply industries.

Acknowledgements

The authors would like to thank Alfons Geser for fruitful discussions

and suggestions during the early phase of the project. Special thanks

are due to Dirk Bendrich from debis Systemhaus Industry GmbH (now

with DaimlerChrysler AG), who was instrumental in initiating the

project. Throughout the project, Alexander Krewitz (debis Systemhaus

Industry GmbH) has been an extremely supportive industrial project

leader. We are grateful to Ralph W�usthofen (DaimlerChrysler AG) for

patiently checking our processes and terminology from an industrial

point of view.

References

1. S. B. Akers. Binary decision diagrams. In IEEE Transactions on Computers,

volume C-27(6), pages 509{516, June 1978.

2. R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve

real-world SAT instances. In Proceedings of the 14th National Conference on

Arti�cial Intelligence (AAAI'97), pages 203{208. AAAI Press, 1997.

3. A. Bor�alv. The industrial success of veri�cation tools based on St�almarck's

method. In O. Grumberg, editor, Computer Aided Veri�cation, volume 1254

of Lecture Notes in Computer Science, pages 7{10. Springer-Verlag, 1997.

4. J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods:

Dispelling industrial prejudices. In M. Naftalin, T. Denvir, and M. Bertran,

editors, FME'94: Industrial Bene�t of Formal Methods, volume 873 of Lecture

Notes in Computer Science, pages 105{117. Springer-Verlag, 1994.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. In

IEEE Transactions on Computers, volume C-35(8), pages 677{691, Aug. 1986.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. In Communications of the ACM, volume 5, pages 394{397, July 1962.

7. M. Davis and H. Putnam. A computing procedure for quanti�cation theory.

In Journal of the ACM, volume 7, pages 201{215, 1960.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and

Semantics, volume 2 of Handbook of Theoretical Computer Science, chapter 6.

Elsevier, 1990.

sat2000.tex; 28/08/1999; 20:34; p.20

21

9. J. W. Freeman. Improvements to Propositional Satis�ability Search Algorithms.

PhD thesis, University of Pennsylvania, Philadelphia, Pennsylvania, May 1995.

10. A. Geser and W. K�uchlin. Structured formal veri�cation of a fragment of the

IBM 390 Clock Chip. Technical Report 97-50, RISC-Linz Report Series, Schlo�

Hagenberg bei Linz, Austria, Oct. 1997.

11. J. Hsiang. Topics in Automated Theorem Proving and Program Generation.

PhD thesis, University of Illinois, Urbana, Illinois, Dec. 1982.

12. F. E. Marschner. Practical challenges for industrial formal veri�cation tools.

In O. Grumberg, editor, Computer Aided Veri�cation, volume 1254 of Lecture

Notes in Computer Science, pages 1{2. Springer-Verlag, 1997.

13. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Boston, 1993.

14. M. H. A. Newman. On theories with a combinatorial de�nition of \equiv-

alence". In Annals of Mathematics, volume 43, pages 223{243. Princeton

University Press, 1942.

15. R. Pugliese and E. Tronci. Automatic veri�cation of a hydroelectric power

plant. In M.-C. Gaudel and J. Woodcock, editors, FME'96: Industrial Bene�t

and Advances in Formal Methods, volume 1051 of Lecture Notes in Computer

Science, pages 425{444. Springer-Verlag, 1996.

16. J. A. Robinson. A machine-oriented logic based on the resolution principle. In

Journal of the ACM, volume 12, pages 23{41, 1965.

17. H. Saiedian. An invitation to formal methods. In E. A. Parrish, editor,

Computer, volume 29, pages 16{30. IEEE Computer Society, Apr. 1996.

18. G. S. Tseitin. On the complexity of derivation in propositional calculus. In

A. O. Silenko, editor, Studies in Constructive Mathematics and Mathematical

Logic, pages 115{125, 1970.

19. A. L. Turk, S. T. Probst, and G. J. Powers. Veri�cation of a chemical process

leak test procedure. In O. Grumberg, editor, Computer Aided Veri�cation,

volume 1254 of Lecture Notes in Computer Science, pages 84{94. Springer-

Verlag, 1997.

20. H. Zhang. SATO: A decision procedure for propositional logic. In Association

for Automated Reasoning Newsletter, volume 22, pages 1{3, Mar. 1993.

21. H. Zhang. SATO: An e�cient propositional prover. In CADE'97: 14th Inter-

national Conference on Automated Deduction, volume 1249 of Lecture Notes

in Computer Science. Springer Verlag, 1997.

22. H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries.

Technical report, Department of Computer Science, The University of Iowa,

Iowa City, IA, Aug. 1994.

sat2000.tex; 28/08/1999; 20:34; p.21

sat2000.tex; 28/08/1999; 20:34; p.22

